Answer:
(a) The sample size required is 1034.
(b) The sample size required is 1040.
Explanation:
The confidence interval for population proportion is:
![CI=\hat p\pm z_( \alpha /2)\sqrt{(\hat p(1-\hat p))/(n) }](https://img.qammunity.org/2021/formulas/mathematics/high-school/p2n0oqnje0j2hjphphqsxmo3nh4zvfj0dy.png)
The margin of error is:
![MOE=z_( \alpha /2)\sqrt{(\hat p(1-\hat p))/(n) }](https://img.qammunity.org/2021/formulas/mathematics/high-school/f1myt04l8rdzhxlqoiysddnm9lwckh090e.png)
Given:
![MOE= 0.04\\Confidence\ level =0.99](https://img.qammunity.org/2021/formulas/mathematics/high-school/n0x6dqijfrdswde5qp82gersv7rmjvzady.png)
The critical value of z for 99% confidence level is:
*Use a standard normal table.
(a)
Compute the sample size required if the previous estimate is
as follows:
![MOE=z_( \alpha /2)\sqrt{(\hat p(1-\hat p))/(n) }\\0.04=2.58* \sqrt{(0.54(1-0.54))/(n) }\\n=((2.58)^(2)* 0.54* (1-0.54))/((0.04)^(2)) \\=1033.4061\\\approx1034](https://img.qammunity.org/2021/formulas/mathematics/high-school/54ggls84g81jal2j4m6zrbrx5v2nx7mdj3.png)
Thus, the sample size required is 1034.
(b)
Compute the sample size required if there was no previous estimate as follows:
Assume that the estimated proportion be 0.50.
![MOE=z_( \alpha /2)\sqrt{(\hat p(1-\hat p))/(n) }\\0.04=2.58* \sqrt{(0.50(1-0.50))/(n) }\\n=((2.58)^(2)* 0.50* (1-0.50))/((0.04)^(2)) \\=1040.0625\\\approx1040](https://img.qammunity.org/2021/formulas/mathematics/high-school/50sjndhqb0v3sw0ynhfar89xnoxjdf8i4p.png)
Thus, the sample size required is 1040.