Answer:
a)
![P(X=1) = (e^(-10) 10^1)/(1!)= 0.000454](https://img.qammunity.org/2021/formulas/mathematics/college/2ebempo7sy8r58x9banple5fl72oe8kw04.png)
b) For this case the new parameter
would be:
![\lambda = 10 (cars)/(hour) * 3 hours =30](https://img.qammunity.org/2021/formulas/mathematics/college/mwsokw6oahuvz0mrrywuxgis11cnz261sf.png)
And we want to calculate the following probability:
![P(X >29)](https://img.qammunity.org/2021/formulas/mathematics/college/l7x3zfmbeptzpl9zvn4svn70m7c9ncukd3.png)
And we can use the complement rule for this case:
![P(X >29) =1-P(X\leq 29)](https://img.qammunity.org/2021/formulas/mathematics/college/z16ztakjs2nlcxs31vo8hsugk3uz53wuxq.png)
And for this case we can use the following excel code in order to find the required probability:
"=1-POISSON.DIST(29,30,TRUE)"
And we got:
![P(X >29) =1-P(X\leq 29)=0.5243](https://img.qammunity.org/2021/formulas/mathematics/college/ejnp8rryydtntbllhawswd1plv8e7xujh2.png)
Explanation:
Part a
Let X the random variable that represent the number of cars arriving for gasoline at Shell station. We know that
The probability mass function for the random variable is given by:
And for this case we want this probability:
![P(X=1)](https://img.qammunity.org/2021/formulas/mathematics/college/dcxr7m9eknq8ztuu22ehd7uzucz0kusg3m.png)
Using the probability mass function we got:
![P(X=1) = (e^(-10) 10^1)/(1!)= 0.000454](https://img.qammunity.org/2021/formulas/mathematics/college/2ebempo7sy8r58x9banple5fl72oe8kw04.png)
Part b
For this case the new parameter
would be:
![\lambda = 10 (cars)/(hour) * 3 hours =30](https://img.qammunity.org/2021/formulas/mathematics/college/mwsokw6oahuvz0mrrywuxgis11cnz261sf.png)
And we want to calculate the following probability:
![P(X >29)](https://img.qammunity.org/2021/formulas/mathematics/college/l7x3zfmbeptzpl9zvn4svn70m7c9ncukd3.png)
And we can use the complement rule for this case:
![P(X >29) =1-P(X\leq 29)](https://img.qammunity.org/2021/formulas/mathematics/college/z16ztakjs2nlcxs31vo8hsugk3uz53wuxq.png)
And for this case we can use the following excel code in order to find the required probability:
"=1-POISSON.DIST(29,30,TRUE)"
And we got:
![P(X >29) =1-P(X\leq 29)=0.5243](https://img.qammunity.org/2021/formulas/mathematics/college/ejnp8rryydtntbllhawswd1plv8e7xujh2.png)