128k views
5 votes
Find
(dy)/(dx) if
y=\int\limits^a_b {e^(t)tan } \,t dt, where a=x^3, b=3x

Find (dy)/(dx) if y=\int\limits^a_b {e^(t)tan } \,t dt, where a=x^3, b=3x-example-1

2 Answers

1 vote

Answer:

3[x²(e^x³)(tan(x³) - (e^3x)tan(3x)]

Explanation:

Derivative of x³ = 3x²

Derivative of 3x = 3

3x²(e^x³)(tan(x³) - 3(e^3x)tan(3x)

3[x²(e^x³)(tan(x³) - (e^3x)tan(3x)]

User Bhanu Sinha
by
3.5k points
4 votes

Explanation:

Use the second fundamental theorem of calculus.

If y = ∫ₐᵇ f(t) dt, then dy/dx = f(b) db/dx − f(a) da/dx

dy/dx = e^(x³) tan (x³) (3x²) − e^(3x) tan (3x) (3)

dy/dx = 3x² e^(x³) tan (x³) − 3 e^(3x) tan (3x)

User Benjamin Mesing
by
3.7k points