Option A :
is the equation of the vertical asymptote
Option D :
is the equation of the horizontal asymptote
Step-by-step explanation:
The given function is
![$f(x)=(5)/(x+7)-8$](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ervfaaydq3zfpw9whwx9ij2q07vyrd6ade.png)
The vertical asymptote of the function can be determined by equating the numerator to zero.
Thus, we have,
![x+7=0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xsazbg9iphlibalw3qvw38mhboi0boipqb.png)
![x=-7](https://img.qammunity.org/2021/formulas/mathematics/middle-school/jajbu3woq01t8jnox7xxi14ediuc9cwdfx.png)
Thus, the vertical asymptote of the function is
![x=-7](https://img.qammunity.org/2021/formulas/mathematics/middle-school/jajbu3woq01t8jnox7xxi14ediuc9cwdfx.png)
Hence, Option A is the correct answer.
Now, we shall determine the horizontal asymptote of the function.
If
, then the function
becomes,
![$\lim _(x \rightarrow \infty) f(x)=\lim _(x \rightarrow \infty) (5)/(x+7)-8=-8](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xnbx925sacacwxezd7di8pgd2mc1jm1tlv.png)
Thus, the horizontal asymptote of the function is
![y=-8](https://img.qammunity.org/2021/formulas/mathematics/middle-school/kjc0iljf46e59q62g7avc18q17xk4olbuz.png)
Hence, Option D is the correct answer.