Answer:
a) The doubling time is 7.27 hours.
b) The population is 6 hours will be 3,543.
Explanation:
The population of the bacteria is modeled by the following equation:
![P(t) = P(0)e^(rt)](https://img.qammunity.org/2021/formulas/mathematics/college/kypuk7au708zl91uc8eucyi2hi9eis1vni.png)
In which P(0) is the initial population, P(t) is the population after t hours and r is the growth rate.
An experiment starts and the population of a bacteria culture increases by 10% in the first hour.
This means that
![P(1) = 1.1P(0)](https://img.qammunity.org/2021/formulas/mathematics/college/enpgpbkghkrdoctutfugckd5x46lh9z68e.png)
Which helps us find r.
So
![P(t) = P(0)e^(rt)](https://img.qammunity.org/2021/formulas/mathematics/college/kypuk7au708zl91uc8eucyi2hi9eis1vni.png)
![1.1P(0) = P(0)e^(r)](https://img.qammunity.org/2021/formulas/mathematics/college/yecw8v7p5bbp1whn4f37tal7mxlxp1n1jy.png)
![e^(r) = 1.1](https://img.qammunity.org/2021/formulas/mathematics/college/tajrod41b5rooon00otwykh2sgje3o9gn0.png)
Applying ln to both sides
![\ln{e^(r)} = ln(1.1)](https://img.qammunity.org/2021/formulas/mathematics/college/csot8u98761vllpvb1j8cnodzcwjvi5ook.png)
![r = 0.0953](https://img.qammunity.org/2021/formulas/mathematics/college/citxivht6q6vfk5vpflea8qqqokwkqjlr5.png)
So
![P(t) = P(0)e^(0.0953t)](https://img.qammunity.org/2021/formulas/mathematics/college/xx0tdi2bpjmwymqngf9gxrepl0g2w2sedy.png)
a) What is the doubling time?
This is t when
![P(t) = 2P(0)](https://img.qammunity.org/2021/formulas/mathematics/college/4qzaxfx3ihh2lhqeqh9x4zcdcmou50kpc7.png)
So
![P(t) = P(0)e^(0.0953t)](https://img.qammunity.org/2021/formulas/mathematics/college/xx0tdi2bpjmwymqngf9gxrepl0g2w2sedy.png)
![2P(0) = P(0)e^(0.0953t)](https://img.qammunity.org/2021/formulas/mathematics/college/hbrqqg03a5kfzlutxr6thlycs6kmn7b5dt.png)
![e^(0.0953t) = 2](https://img.qammunity.org/2021/formulas/mathematics/college/mwxzm7bscd1umr444o8y2sopsp4bagm9ny.png)
Applying ln to both sides
![\ln{e^(0.0953t)} = ln(2)](https://img.qammunity.org/2021/formulas/mathematics/college/jv2zov1476idccrdtir5zxndm2h08hgh9n.png)
![0.0953t = ln(2)](https://img.qammunity.org/2021/formulas/mathematics/college/v5koyshaddh2lo7as7kg4ubbq0c8w3p9n1.png)
![t = (ln(2))/(0.0953)](https://img.qammunity.org/2021/formulas/mathematics/college/xm09ozjuncafbkri61uwx4ecll19pxnvqa.png)
![t = 7.27](https://img.qammunity.org/2021/formulas/mathematics/college/oqxtt6d3rhb4af7i9sp59rvj1n5e9mjfp2.png)
The doubling time is 7.27 hours.
b) If the initial population is 2,000, what is the population in 6 hours?
This is P(6) when
. So
![P(t) = P(0)e^(0.0953t)](https://img.qammunity.org/2021/formulas/mathematics/college/xx0tdi2bpjmwymqngf9gxrepl0g2w2sedy.png)
![P(6) = 2000e^(0.0953*6) = 3543](https://img.qammunity.org/2021/formulas/mathematics/college/hcpy0o9gmuo9jv6ts2zbnbsi0uuiw9hzrk.png)
The population is 6 hours will be 3,543.