163k views
3 votes
Given the functions k(x) = 2x2 − 8 and p(x) = x − 4, find (k ∘ p)(x).

(k ∘ p)(x) = 2x2 − 16x + 24
(k ∘ p)(x) = 2x2 − 8x + 8
(k ∘ p)(x) = 2x2 − 16x + 32
(k ∘ p)(x) = 2x2 − 12

User Lbarqueira
by
4.8k points

2 Answers

2 votes

Answer:

The answer is A. (k o p) (x)=2x^2-16x+24

Explanation:

User Namanyay Goel
by
4.8k points
2 votes


(k_ {0} p) (x) = 2x^2 -16x + 24

Solution:

Given functions are:


k(x) = 2x^2 - 8\\\\p(x) = x-4

To Find:
(k_ {0} p) (x)

By definition of compound functions,


(k_ {0} p) (x) = k (p (x))

Substitute p(x) value in x place in k(x)


(k_ {0} p) (x) = 2(x-4)^2-8\\\\Expand\\\\(k_ {0} p) (x) =2(x^2 -8x +16) - 8\\\\(k_ {0} p) (x) = 2x^2 -16x + 32-8\\\\Simplify\\\\(k_ {0} p) (x) = 2x^2 -16x + 24

Thus the required is found

User Havelock
by
4.1k points