Option C: The solution set is
![\{8\}](https://img.qammunity.org/2021/formulas/mathematics/high-school/3y9d51m3b9nbjncb3fc618ifbmo1riyta4.png)
Step-by-step explanation:
The expression is
![3 \ln 4=2 \ln x](https://img.qammunity.org/2021/formulas/mathematics/high-school/fc3b8f4tbm1aswelvq7b7lhokt3opvi8gr.png)
Now, let us find the solution set.
Switch sides, we get,
![2 \ln x=3 \ln 4](https://img.qammunity.org/2021/formulas/mathematics/high-school/ca65aqt5v20b6xbuo0v5e6gal6akoaczq0.png)
Dividing by 2 on both sides, we have,
![\ln x=(3 \ln 4)/(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/r94knsw6q50d4yn4pz37197n978ne10ij8.png)
Thus,
Hence, the above expression becomes,
![\ln x=(3 \cdot 2 \ln (2))/(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/lb6zvvehz7jprr4fzgmblt3oxxl8hmu6wt.png)
Simplifying, we get,
![\ln x=3 \ln 2](https://img.qammunity.org/2021/formulas/mathematics/high-school/eqhhibkdqnln7sw1qj2xg0r1ecvwi6vtyx.png)
Applying the log rule, we get,
![$$\ln x$=\ln \left(2^(3)\right)$](https://img.qammunity.org/2021/formulas/mathematics/high-school/4u5ifs1uwvc2jngyz30ybfa6ut06914epz.png)
Simplifying, we have,
![$$\ln x$=\ln \left8\right$](https://img.qammunity.org/2021/formulas/mathematics/high-school/ecm3gf6db5ov7tyz4cnfa27s2bg7sgpwza.png)
Applying the log rule, we have,
![x=8](https://img.qammunity.org/2021/formulas/mathematics/middle-school/eubtzoilwcpy5phrh05m4p6y4hzzjhe5fz.png)
Thus, the solution set is
![\{8\}](https://img.qammunity.org/2021/formulas/mathematics/high-school/3y9d51m3b9nbjncb3fc618ifbmo1riyta4.png)
Hence, Option C is the correct answer.