129k views
1 vote
Simplify LogX(logx)²​

1 Answer

2 votes

Answer:


\log \:_(10)\left(x\right)\left(\log \:_(10)\left(x\right)\right)^2=\log \:_(10)\left(x\right)^3

Explanation:

Considering the expression


\log _(10)\left(x\right)\left(\log _(10)\left(x\right)\right)^2

Simplifying


\log _(10)\left(x\right)\left(\log _(10)\left(x\right)\right)^2


\mathrm{Apply\:exponent\:rule}:\quad \:a^b\cdot \:a^c=a^(b+c)


\log _(10)\left(x\right)\left(\log _(10)\left(x\right)\right)^2=\:\log _(10)\left(x\right)^(1+2)


=\log _(10)\left(x\right)^(1+2)


\mathrm{Add\:the\:numbers:}\:1+2=3


=\log _(10)\left(x\right)^3

Therefore,


  • \log \:_(10)\left(x\right)\left(\log \:_(10)\left(x\right)\right)^2=\log \:_(10)\left(x\right)^3
User ThinkJet
by
8.1k points

Related questions

1 answer
0 votes
141k views
asked Jan 1, 2022 10.7k views
Corretge asked Jan 1, 2022
by Corretge
7.9k points
1 answer
4 votes
10.7k views