Answer:
The required formula is:
Explanation:
The total number of squares of the the first term = 4
The total number of squares of the the second term = 7
The total number of squares of the the third term = 10
so,
Finding the common difference d
As the common difference 'd' is same, it means the sequence is in arithmetic.
So
If the initial term of an arithmetic progression is
and the common difference of successive members is d, then the nth term of the sequence
is given by:
Therefore, the required formula is: