Answer:
The correct option is D.
i.e.
is the correct option.
The correct graph is shown in attached figure.
Explanation:
Considering the function
![f\left(x\right)=(1)/(x\left(x+4\right))](https://img.qammunity.org/2021/formulas/mathematics/middle-school/qkg38ip9k4iy6yjm6q8mh223bi23jie22g.png)
![\mathrm{Domain\:of\:}\:(1)/(x\left(x+4\right))\::\quad \begin{bmatrix}\mathrm{Solution:}\:&\:x<-4\quad \mathrm{or}\quad \:-4<x<0\quad \mathrm{or}\quad \:x>0\:\\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:-4\right)\cup \left(-4,\:0\right)\cup \left(0,\:\infty \:\right)\end{bmatrix}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/hub6aefks11udshs3vf1fq1tzlio56uuzc.png)
![\mathrm{Range\:of\:}(1)/(x\left(x+4\right)):\quad \begin{bmatrix}\mathrm{Solution:}\:&\:f\left(x\right)\le \:-(1)/(4)\quad \mathrm{or}\quad \:f\left(x\right)>0\:\\ \:\mathrm{Interval\:Notation:}&\:(-\infty \:,\:-(1)/(4)]\cup \left(0,\:\infty \:\right)\end{bmatrix}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/juspud8e91evn3161wx1luicz2wjbpn4jo.png)
![\mathrm{Axis\:interception\:points\:of}\:(1)/(x\left(x+4\right)):\quad \mathrm{None}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/583vid2m003wv772w3fv717hq74nt8pxl6.png)
![\mathrm{Extreme\:Points\:of}\:(1)/(x\left(x+4\right)):\quad \mathrm{Maximum}\left(-2,\:-(1)/(4)\right)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/f4invvutqne4nha6jj44jq4loe6fmvc08t.png)
So, the correct graph is shown in attached figure.
Therefore, the correct option is D.
i.e.
is the correct option.