Answer:
The probability that fewer than 3 of them use their smartphones in meetings or classes is 0.03634
Explanation:
Apply binomial probability formula which is written as;
![P(X=x)=(n!)/(x!(n-x)!) *P^(x) *(1-P)^(n-x)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/9c9flzxwufesv5q5y40wk4qm4gs4va6toi.png)
where P=46% =0.46, n=12
For this case where you find the probability that fewer than 3 of them use their smartphones in meeting or classes, x=2,1,0
Evaluating binomial probability at x=2 will be;
![P(X=2)=(12!)/(2!(12-2)!) *0.46^2*(1-0.46)^(12-2) \\\\P(X=2)=(12!)/(2!10!) *0.2116*0.002108\\\\=66*0.2116*0.002108\\=0.02944](https://img.qammunity.org/2021/formulas/mathematics/middle-school/k347hilbpmbu2ni7epqai9mpztdkohykvk.png)
P(X=2)=0.02944
Evaluate binomial probability at x=1
![P(X=1)=(12!)/(1!(12-1)!) *0.46^1*(1-0.46)^(12-1) \\\\P(X=1)=(12!)/(1!11!) *0.46*0.54^(11) \\\\P(X=1)=12*0.46*0.001138\\\\P(X=1)=0.006284](https://img.qammunity.org/2021/formulas/mathematics/middle-school/mq1nh2ft4jmocg5x35xl4foar0pv9v6eto.png)
P(X=1)= 0.006284
Evaluate binomial probability at x=0
![P(X=0)=(12!)/(0!(12-0)!) *0.46^0*(1-0.46)^(12-0) \\\\P(X=0)=(12!)/(1*12!) *0.46^0*0.54^(12) \\\\P(X=0)=1*1*0.0006148 =0.0006148](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xfdxaziwynyiqlk0evmtiihdi7ypdtfp0j.png)
P(X=0)=0.0006148
Now for P(X<3)=P(X=2)+P(X=1)+P(X=10) =0.02944+0.006284+0.0006148
=0.0363388
=0.03634 (in 4 significant figures)