110k views
2 votes
Please Need help on these

Please Need help on these-example-1
User Ichigo
by
9.0k points

1 Answer

3 votes

Question # 3

Answer:


x = 13.094

Explanation

Considering the exponential equation


e^(x-9)-6=54

Solving the exponentiation equation


e^(x-9)-6=54


\mathrm{Add\:}6\mathrm{\:to\:both\:sides}


e^(x-9)-6+6=54+6


e^(x-9)=60


\mathrm{If\:}f\left(x\right)=g\left(x\right)\mathrm{,\:then\:}\ln \left(f\left(x\right)\right)=\ln \left(g\left(x\right)\right)


\ln \left(e^(x-9)\right)=\ln \left(60\right)


\mathrm{Apply\:log\:rule}:\quad \log _a\left(x^b\right)=b\cdot \log _a\left(x\right)


\ln \left(e^(x-9)\right)=\left(x-9\right)\ln \left(e\right)


\left(x-9\right)\ln \left(e\right)=\ln \left(60\right)


\mathrm{Apply\:log\:rule}:\quad \log _a\left(a\right)=1


\ln \left(e\right)=1


x-9=\ln \left(60\right)


x=\ln \left(60\right)+9


x=13.094
\ln \left(60\right)=4.094

Therefore, x = 13.094

Question # 4

Answer:


x=0.386

Explanation

Considering the exponential equation


3e^(9x)-6=91

Solving the exponentiation equation


3e^(9x)-6=91


\mathrm{Add\:}6\mathrm{\:to\:both\:sides}


3e^(9x)=97


\mathrm{Divide\:both\:sides\:by\:}3


(3e^(9x))/(3)=(97)/(3)


e^(9x)=(97)/(3)


\mathrm{If\:}f\left(x\right)=g\left(x\right)\mathrm{,\:then\:}\ln \left(f\left(x\right)\right)=\ln \left(g\left(x\right)\right)


\ln \left(e^(9x)\right)=9x\ln \left(e\right)


9x\ln \left(e\right)=\ln \left((97)/(3)\right)


\mathrm{Apply\:log\:rule}:\quad \log _a\left(a\right)=1


\ln \left(e\right)=1


9x=\ln \left((97)/(3)\right)


\mathrm{Divide\:both\:sides\:by\:}9


(9x)/(9)=(\ln \left((97)/(3)\right))/(9)


x=(\ln \left((97)/(3)\right))/(9)


x=(3.476)/(9)
ln\left((97)/(3)\right)=3.476


x=0.386

Therefore, x = 0.386

User Sanjay Kattimani
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories