110k views
2 votes
Please Need help on these

Please Need help on these-example-1
User Ichigo
by
5.3k points

1 Answer

3 votes

Question # 3

Answer:


x = 13.094

Explanation

Considering the exponential equation


e^(x-9)-6=54

Solving the exponentiation equation


e^(x-9)-6=54


\mathrm{Add\:}6\mathrm{\:to\:both\:sides}


e^(x-9)-6+6=54+6


e^(x-9)=60


\mathrm{If\:}f\left(x\right)=g\left(x\right)\mathrm{,\:then\:}\ln \left(f\left(x\right)\right)=\ln \left(g\left(x\right)\right)


\ln \left(e^(x-9)\right)=\ln \left(60\right)


\mathrm{Apply\:log\:rule}:\quad \log _a\left(x^b\right)=b\cdot \log _a\left(x\right)


\ln \left(e^(x-9)\right)=\left(x-9\right)\ln \left(e\right)


\left(x-9\right)\ln \left(e\right)=\ln \left(60\right)


\mathrm{Apply\:log\:rule}:\quad \log _a\left(a\right)=1


\ln \left(e\right)=1


x-9=\ln \left(60\right)


x=\ln \left(60\right)+9


x=13.094
\ln \left(60\right)=4.094

Therefore, x = 13.094

Question # 4

Answer:


x=0.386

Explanation

Considering the exponential equation


3e^(9x)-6=91

Solving the exponentiation equation


3e^(9x)-6=91


\mathrm{Add\:}6\mathrm{\:to\:both\:sides}


3e^(9x)=97


\mathrm{Divide\:both\:sides\:by\:}3


(3e^(9x))/(3)=(97)/(3)


e^(9x)=(97)/(3)


\mathrm{If\:}f\left(x\right)=g\left(x\right)\mathrm{,\:then\:}\ln \left(f\left(x\right)\right)=\ln \left(g\left(x\right)\right)


\ln \left(e^(9x)\right)=9x\ln \left(e\right)


9x\ln \left(e\right)=\ln \left((97)/(3)\right)


\mathrm{Apply\:log\:rule}:\quad \log _a\left(a\right)=1


\ln \left(e\right)=1


9x=\ln \left((97)/(3)\right)


\mathrm{Divide\:both\:sides\:by\:}9


(9x)/(9)=(\ln \left((97)/(3)\right))/(9)


x=(\ln \left((97)/(3)\right))/(9)


x=(3.476)/(9)
ln\left((97)/(3)\right)=3.476


x=0.386

Therefore, x = 0.386

User Sanjay Kattimani
by
4.4k points