140k views
3 votes
What is an equation of the line perpendicular to y=-x-2 and through (-2, 4)?

I would really appreciate the help, I've been stuck on this problem for awhile.​

User Hmoritz
by
3.2k points

1 Answer

9 votes

Answer: y = x + 6

Explanation:


\mathrm{Find\:the\:line\:}\mathbf{y=mx+b}\mathrm{\:perpendicular\:to\:}y=-x-2\mathrm{\:that\:passes\:through\:}\left(-2,\:4\right)


\mathrm{For\:a\:line\:equation\:for\:the\:form\:of\:}\mathbf{y=mx+b}\mathrm{,\:the\:slope\:is\:}\mathbf{m}


m=-1


\mathrm{The\:perpendicular\:slope\:is\:the\:negative\:reciprocal\:of\:the\:given\:slope}


\left(-1\right)m_p=-1


(\left(-1\right)m_p)/(-1)=(-1)/(-1)


m_p=1


\mathrm{Compute\:the\:line\:equation\:}\mathbf{y=mx+b}\mathrm{\:for\:slope\:m=}1\mathrm{\:and\:passing\:through\:}\left(-2,\:4\right)
\mathrm{Plug\:the\:slope\:}1\mathrm{\:into\:}y=mx+b


y=x+b


\mathrm{Plug\:in\:}\left(-2,\:4\right)\mathrm{:\:}\quad \:x=-2,\:y=4


4=\left(-2\right)+b


-2+b=4


\mathrm{Add\:}2\mathrm{\:to\:both\:sides}


-2+b+2=4+2


\text{Simplify}


b=6


\mathrm{Construct\:the\:line\:equation\:}\mathbf{y=mx+b}\mathrm{\:where\:}\mathbf{m}=1\mathrm{\:and\:}\mathbf{b}=6


y=x+6

User Eddy Talvala
by
3.3k points