131k views
2 votes
Prove that : cos10° - sin10° / sin10° + cos10° = tan35°​

User Nduplessis
by
8.5k points

1 Answer

3 votes

Explanation:

(cos 10° − sin 10°) / (cos 10° + sin 10°)

Rewrite 10° as 45° − 35°.

(cos(45° − 35°) − sin(45° − 35°)) / (cos(45° − 35°) + sin(45° − 35°))

Use angle difference formulas.

(cos 45° cos 35° + sin 45° sin 35° − sin 45° cos 35° + cos 45° sin 35°) / (cos 45° cos 35° + sin 45° sin 35° + sin 45° cos 35° − cos 45° sin 35°)

sin 45° = cos 45°, so dividing:

(cos 35° + sin 35° − cos 35° + sin 35°) / (cos 35° + sin 35° + cos 35° − sin 35°)

Combining like terms:

(2 sin 35°) / (2 cos 35°)

Dividing:

tan 35°

User EdzJohnson
by
8.2k points

Related questions

asked May 24, 2018 41.5k views
Bibscy asked May 24, 2018
by Bibscy
8.2k points
1 answer
4 votes
41.5k views
asked Mar 23, 2019 111k views
Astromax asked Mar 23, 2019
by Astromax
8.1k points
1 answer
3 votes
111k views
asked May 28, 2021 2.3k views
Kgdesouz asked May 28, 2021
by Kgdesouz
8.0k points
1 answer
3 votes
2.3k views