Answer:
Step-by-step explanation:
Using the improved Butterworth filter design.
Given that,
Attenuation(dB)=10log(1+(f/fc)^2k)
k is the stage of the filter
For this case it is a single stage
Then k=1.
fc is the cutoff frequency and it is given as 100Hz
fc=100Hz
f is frequency at attenuation
Then taking the frequency one after the other
1. When f=10Hz
Then,
Attenuation(dB)=10log(1+(f/fc)^2k)
k=1, fc=100Hz and f=10Hz
Attenuation(dB)=10log(1+(10/100)^2)
Attenuation(dB)=10log(1+0.1²)
Attenuation(dB)=10log(1.01)
Attenuation(dB)=0.0432dB
2. When f=50Hz
Then,
Attenuation(dB)=10log(1+(f/fc)^2k)
k=1, fc=100Hz and f=50Hz
Attenuation(dB)=10log(1+(50/100)^2)
Attenuation(dB)=10log(1+0.5²)
Attenuation(dB)=10log(1.25)
Attenuation(dB)=0.969dB
3. When f=75Hz
Then,
Attenuation(dB)=10log(1+(f/fc)^2k)
k=1, fc=100Hz and f=75Hz
Attenuation(dB)=10log(1+(75/100)^2)
Attenuation(dB)=10log(1+0.75²)
Attenuation(dB)=10log(1.5625)
Attenuation(dB)=1.938dB
4.When f=200Hz
Then,
Attenuation(dB)=10log(1+(f/fc)^2k)
k=1, fc=100Hz and f=200Hz
Attenuation(dB)=10log(1+(200/100)^2)
Attenuation(dB)=10log(1+2²)
Attenuation(dB)=10log(5)
Attenuation(dB)=6.99dB