Answer: the Standard deviation for the angles is 0.00766°
Explanation:
We first covert the angles to standard angle format.
For A) 42° 52' 09'' we have;
42 + (52/60) + (9/3600)
= 42 + 0.866 + 0.00305 = 42.8685°
Repeating the same procedure for the other angles we have
B) 42. 88605°
C) 42.87377°
D) 42.87461°
E) 42.87211°
F) 42.88438°
Mean of the angles becomes
x' = (42.8685+42.88605+42.87377+42.87461+42.87211+42.88448)/6
x' = 42.87657°
x - x' = 0.00807, 0.00948, 0.0028, 0.00196, 0.00446, 0.00781
NB: x - x' values is the mean angle minus the individual angle. We ignore the minus signs
(x - x') ^2 = 0.000065, 0.0000898, 0.0000784, 0.0000384, 0.0000198, 0.0000609
Variance = ( 0.000065+0.0000898+0.0000784+0.0000384+0.0000198+0.0000609)/6
= 0.000358/6 = 0.0000587.
Standard deviation = square root of variance
SD = 0.0000587^0.5 = 0.00766°