Option A:
Yes, he is correct.
Solution:
To find the distance between two points (2, 4) and (6, 3).
Distance between two points formula:
![d=√((x_2-x_1)^2+(y_2-y_1)^2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ykj4vnimechxgkuvrtfa2qltyc73jt9g88.png)
Here
![x_1=2, x_2=6, y_1=4, y_2=3](https://img.qammunity.org/2021/formulas/mathematics/high-school/50ozzukovmnoyc9klqbl8io0lr9ha1f420.png)
Substitute these in the distance formula.
Step 1:
![d=√((6-2)^2+(3-4)^2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/a91ia6pykjzsqxlz759yjy6xsf7hurg06w.png)
Step 2 :
Using BODMAS rule, first simplify the values into the bracket.
![d=√((4)^2+(-1)^2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/wmgk0e03yme6lbdmw832jnus1z80ekxkgy.png)
Step 3:
Squaring the numbers.
![d=√(16+1)](https://img.qammunity.org/2021/formulas/mathematics/high-school/on8v26f2bvf29b3v2q2k8y0bedzx6k4dfo.png)
![d=√(17)](https://img.qammunity.org/2021/formulas/mathematics/high-school/u5o2awpnxu56fmyuf54gqwizagfz7zqh2t.png)
Therefore, George's work is correct.
Option A is the correct answer.