116k views
1 vote
Solve the two step inequality and match the answer to the graph.

Solve the two step inequality and match the answer to the graph.-example-1

1 Answer

7 votes

SOLVING THE INEQUALITY
3x-10<-25 TO MATCH OPTION A

Considering the inequality


3x-10<-25


3x-10+10<-25+10


3x<-15


(3x)/(3)<(-15)/(3)


x<-5

Thus,


3x-10<-25\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&amp;\:x<-5\:\\ \:\mathrm{Interval\:Notation:}&amp;\:\left(-\infty \:,\:-5\right)\end{bmatrix}

Therefore, the inequality
3x-10<-25 has the solution
x<-5 which matches the option A.

SOLVING THE INEQUALITY
-4x+7\ge \:27 TO MATCH OPTION B

Considering the inequality


-4x+7\ge \:27


-4x+7-7\ge \:27-7


-4x\ge \:20


\mathrm{Multiply\:both\:sides\:by\:-1\:\left(reverse\:the\:inequality\right)}


\left(-4x\right)\left(-1\right)\le \:20\left(-1\right)


4x\le \:-20


(4x)/(4)\le (-20)/(4)


x\le \:-5

Thus,


-4x+7\ge \:27\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&amp;\:x\le \:-5\:\\ \:\mathrm{Interval\:Notation:}&amp;\:(-\infty \:,\:-5]\end{bmatrix}

Therefore, the inequality
-4x+7\ge \:27 has the solution
x\le \:-5 which matches the option B.

SOLVING THE INEQUALITY
(x)/(1)-9<-10 TO MATCH OPTION C

Considering the inequality


(x)/(1)-9<-10


\mathrm{Apply\:rule}\:(a)/(1)=a


x-9<-10
(x)/(1)=x


x-9<-10


x-9+9<-10+9


x<-1


(x)/(1)-9<-10\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&amp;\:x<-1\:\\ \:\mathrm{Interval\:Notation:}&amp;\:\left(-\infty \:,\:-1\right)\end{bmatrix}

Therefore, the inequality
(x)/(1)-9<-10 has the solution
x<-1 which matches the option C.

SOLVING THE INEQUALITY
5\left(x-2\right)>-15 TO MATCH OPTION D

Considering the inequality


5\left(x-2\right)>-15


\mathrm{Divide\:both\:sides\:by\:}5


(5\left(x-2\right))/(5)>(-15)/(5)


x-2>-3


x-2+2>-3+2


x>-1

Thus,


5\left(x-2\right)>-15\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&amp;\:x>-1\:\\ \:\mathrm{Interval\:Notation:}&amp;\:\left(-1,\:\infty \:\right)\end{bmatrix}

Therefore, the inequality
5\left(x-2\right)>-15 has the solution
x>-1 which matches the option D.

User Oli
by
4.2k points