76.4k views
0 votes
The area enclosed by the graphs of y = 1/x, y = 1, and x = 3 is rotated about the line y = -1. Find the volume and show steps.

User Janson
by
5.6k points

1 Answer

6 votes

Answer:


A=\pi\displaystyle\biggr[(16)/(3)-2\ln(|3|)\biggr]\approx9.8524

Explanation:

Use the Washer Method
A=\pi\displaystyle \int\limits_(a)^(b){\bigr[R(x)^2-r(x)^2\bigr] \, dx where
R(x) is the outer radius and
r(x) is the inner radius.

If we sketch out the graph, we see that
y=1 intersects points
(1,1) and
(3,1), which will be our bounds of integration.

Here, our outer radius will be
R(x)=(-1-1)=-2 and our inner radius will be
r(x)=-1-(1)/(x).

Thus, we can compute the integral and find the volume:


A=\pi\displaystyle\int\limits^(3)_(1) {(-2)^2-\biggr(-1-(1)/(x)\biggr)^2 } \, dx\\ \\A=\pi\displaystyle\int\limits^(3)_(1) {4-\biggr(1+(2)/(x)+(1)/(x^2) \biggr) } \, dx\\\\A=\pi\displaystyle\int\limits^(3)_(1) {4-1-(2)/(x)-(1)/(x^2)} \, dx\\\\A=\pi\displaystyle\int\limits^(3)_(1) {3-(2)/(x)-(1)/(x^2)} \, dx\\\\A=\pi\displaystyle\biggr[3x-2\ln(|x|)+(1)/(x)\biggr]\Biggr|_(1)^(3)\\


A=\pi\displaystyle\biggr[\biggr(3(3)-2\ln(|3|)+(1)/(3)\biggr)-\biggr(3(1)-2\ln(|1|)+(1)/(1)\biggr)\biggr]\\\\A=\pi\displaystyle\biggr[\biggr(9-2\ln(|3|)+(1)/(3)\biggr)-\biggr(3+1\biggr)\biggr]\\\\A=\pi\displaystyle\biggr[\biggr((28)/(3)-2\ln(|3|)\biggr)-\biggr(4\biggr)\biggr]\\A=\pi\displaystyle\biggr[(16)/(3)-2\ln(|3|)\biggr]\\A\approx9.8524

In conclusion, the volume of the solid of revolution will be about 9.8524 cubic units. See the attached graph for a helpful visual!

The area enclosed by the graphs of y = 1/x, y = 1, and x = 3 is rotated about the-example-1
User Evan Deaubl
by
5.5k points