Answer:
![A=\pi\displaystyle\biggr[(16)/(3)-2\ln(|3|)\biggr]\approx9.8524](https://img.qammunity.org/2023/formulas/mathematics/college/r9lgjd31oq1ppebti0twh27zp9goygv4ku.png)
Explanation:
Use the Washer Method
where
is the outer radius and
is the inner radius.
If we sketch out the graph, we see that
intersects points
and
, which will be our bounds of integration.
Here, our outer radius will be
and our inner radius will be
.
Thus, we can compute the integral and find the volume:
![A=\pi\displaystyle\int\limits^(3)_(1) {(-2)^2-\biggr(-1-(1)/(x)\biggr)^2 } \, dx\\ \\A=\pi\displaystyle\int\limits^(3)_(1) {4-\biggr(1+(2)/(x)+(1)/(x^2) \biggr) } \, dx\\\\A=\pi\displaystyle\int\limits^(3)_(1) {4-1-(2)/(x)-(1)/(x^2)} \, dx\\\\A=\pi\displaystyle\int\limits^(3)_(1) {3-(2)/(x)-(1)/(x^2)} \, dx\\\\A=\pi\displaystyle\biggr[3x-2\ln(|x|)+(1)/(x)\biggr]\Biggr|_(1)^(3)\\](https://img.qammunity.org/2023/formulas/mathematics/college/sbdp4hrh78dpy8gasmamvz2aiej6ex2y7j.png)
![A=\pi\displaystyle\biggr[\biggr(3(3)-2\ln(|3|)+(1)/(3)\biggr)-\biggr(3(1)-2\ln(|1|)+(1)/(1)\biggr)\biggr]\\\\A=\pi\displaystyle\biggr[\biggr(9-2\ln(|3|)+(1)/(3)\biggr)-\biggr(3+1\biggr)\biggr]\\\\A=\pi\displaystyle\biggr[\biggr((28)/(3)-2\ln(|3|)\biggr)-\biggr(4\biggr)\biggr]\\A=\pi\displaystyle\biggr[(16)/(3)-2\ln(|3|)\biggr]\\A\approx9.8524](https://img.qammunity.org/2023/formulas/mathematics/college/3cc0aauhhvdbonbluzgv6b2ngx8e6a4ei1.png)
In conclusion, the volume of the solid of revolution will be about 9.8524 cubic units. See the attached graph for a helpful visual!