Answer:
T_Bf = 319.75 K
T_Af = 430.25 K
Q / n_A = 3.118 KJ/mol
Step-by-step explanation:
Given:
- The initial conditions:
T_A = T_B = T_i = 300 K
P_A = P_B = P_i = 1 atm
- The masses in both sections (n)
- Cp = 7/2 R
- R = 8.314 KJ/molK
Find:
- For first set a only:
T_Af, T_Bf, and Q/n_A, if P_f = 1.25 atm
Solution:
- Use the ideal gas equation to calculate the individual Volumes of both sections:
V_A = V_B = n*R*T_i / P_i
- For initial state the total volume V:
V = V_A + V_B
V = n*R*T_i / P_i + n*R*T_i / P_i
V = 2*n*R*T_i / P_i
- Similarly the Total Volume V by using final state:
V = n*R*(T_Af + T_Bf) / P_f
- Since, the total volume remains same, then equate the initial state and final state total volumes V:
2*n*R*T_i / P_i = n*R*(T_Af + T_Bf) / P_f
2*T_i / P_i = (T_Af + T_Bf) / P_f
- Use, the adiabatic process equation for section B:
T_Bf = T_Bi*(P_Bi / P_Bf)^(1 - k / k )
Where, k = Cp / Cv and Cv = Cp - R , Cp = 7/2 R
Cv = 7/2 R - R
Cv = 5/2 R
k = (7/2 R) / (5/2 R) = 7/5
Hence,
T_Bf = 300*(1 / 1.25)^(-2/7 )
T_Bf = 319.75 K
And,
2*T_i / P_i = (T_Af + T_Bf) / P_f
2*300/1 = (T_Af + 319.75) / 1.25
T_Af = 600*1.25 - 319.25
T_Af = 430.25 K
- The energy transfer by the system is given by first thermodynamic Law:
Δ U = Q + W
For no boundary work W = 0,
Δ U_A + Δ U_B = Q
Q = n_A*Cv*( T_Af - T_i ) + n_B*Cv*( T_Bf - T_i )
Where, n_A = n_B = n,
Q / n_A = Cv * ( T_Af + T_Bf - 2*T_i )
Q / n_A = 5*8.314/2 * ( 319.75 + 430.75 - 2*300 )
Q / n_A = 3.118 KJ/mol