164k views
9 votes
Solve- cbb to work it out

Solve- cbb to work it out-example-1
User Lolelo
by
4.4k points

2 Answers

2 votes

Answers:

Hypotenuse of triangle ( a ) = 21.63 mm

Hypotenuse of triangle ( b ) = 150 mm

Hypotenuse of triangle ( c ) = 111.80 mm

Step-by-step explanation :

find the length of hypotenuse in the given 3 triangles, which can be done by using Pythagoras theorem.


h^2 = b^2 + p^2

And we have to convert the answer to the units indicated in red i.e, in mm.

Since 1cm = 10 mm, we will convert the given values of length of side in mm before putting the values in the formula


For \: \: triangle ( a )</p><p>\qquad \sf{ h^2 = b^2 + p^2}


\qquad \sf{ h =√(b^2 + p^2)}
\qquad \sf{h=√( (12)^2 + (18)^2 )}
\qquad\sf{h=√( (12)^2 + (18)^2 )} \\ \\ \qquad \sf{ h= √(144 + 324)} \\ \\ \qquad \sf{ h = √(468)}</p><p> \\ \\\qquad\underline{\underline{\pmb{ \sf{ h = 21.63 mm}}}} \\ \\ For \: \: triangle ( b ) \qquad \sf{ h^2 = b^2 + p^2} \\ \\ \qquad \sf{h =√(b^2 + p^2) } \\ \\ \qquad \sf{ h = √((90)^2+(120)^2)} \\ \\ \qquad \sf{ h=√(8100+14400)} \\ \\ </p><p>\qquad \sf{ h =√(22500)} \\ \\\qquad\underline{\underline{\pmb{ \sf{h = 150mm}}} } \\ \\ For \: \: triangle ( c ) \qquad \sf{h^2 = b^2 + p^2 } \\ \\ \qquad \sf{ h=√(b^2 + p^2)} \\ \\\qquad\sf{ h=√((100)^2)+(50)^2)} \\ \\\qquad\sf{ h=√(10000+2500)} \\ \\ \qquad \sf{ h =√(12500)} \\ \\ </p><p>\qquad\underline{\underline{\pmb{\sf{h = 111.80mm}}} }

User Brian Hogan
by
4.4k points
13 votes

Answers:

➝ Hypotenuse of triangle ( a ) = 21.63 mm

➝ Hypotenuse of triangle ( b ) = 150 mm

➝ Hypotenuse of triangle ( c ) = 111.80 mm


\quad\rule{300pt}{1.5pt}\quad

Solution:

We have to find the length of hypotenuse in the given 3 triangles, which can be done by using Pythagoras theorem.

  • Pythagoras theorem states that :

" In a right angled triangle, the square of hypotenuse side is equal to the sum of square of other two sides "


\qquad \bull \:{\pmb{\mathfrak{ h^2 = b^2 + p^2}}}

And we have to convert the answer to the units indicated in red i.e, in mm.

Since 1cm = 10 mm, we will convert the given values of length of side in mm before putting the values in the formula

  • For triangle ( a )


:\implies\qquad \sf{ h^2 = b^2 + p^2}


:\implies\qquad \sf{ h =√(b^2 + p^2)}


:\implies\qquad \sf{h=√( (12)^2 + (18)^2 )}


:\implies\qquad \sf{ h= √(144 + 324)}


:\implies\qquad \sf{ h = √(468)}


:\implies\qquad\underline{\underline{\pmb{ \sf{ h = 21.63 mm}}}}

  • For triangle ( b )


:\implies\qquad \sf{ h^2 = b^2 + p^2}


:\implies\qquad \sf{h =√(b^2 + p^2) }


:\implies\qquad \sf{ h = √((90)^2+(120)^2)}


:\implies\qquad \sf{ h=√(8100+14400)}


:\implies\qquad \sf{ h =√(22500)}


:\implies\qquad\underline{\underline{\pmb{ \sf{h = 150mm}}} }

  • For triangle ( c )


:\implies\qquad \sf{h^2 = b^2 + p^2 }


:\implies\qquad \sf{ h=√(b^2 + p^2)}


:\implies\qquad \sf{ h =√((100)^2)+(50)^2)}


:\implies\qquad \sf{ h=√(10000+2500)}


:\implies\qquad \sf{ h =√(12500)}


:\implies\qquad \underline{\underline{\pmb{\sf{h = 111.80mm}}} }

User VDog
by
4.5k points