55.2k views
0 votes
Answer the following questions about the sphere whose equation is given by x2+y2+z2−8x+4y=−4. 1. Find the radius of the sphere. Radius: ????= 2. Find the center of the sphere. Write the center as a point (????,????,c) where ????, ????, and c are numbers. Center:

User Sgraffite
by
8.3k points

1 Answer

5 votes

Answer:

we have (a,b,c)=(4,-2,0) and R=4 (radius)

Explanation:

since

x²+y²+z²−8x+4y=−4

we have to complete the squares to finish with a equation of the form

(x-a)²+(y-b)²+(z-c)²=R²

that is the equation of a sphere of radius R and centre in (a,b,c)

thus

x²+y²+z²−8x+4y=−4

x²+y²+z²−8x+4y +4 = 0

x²+y²+z²−8x+4y +4 +16-16 =0

(x²−8x + 16) + (y² + 4y + 4 ) + (z²) -16 = 0

(x-4)² + (y+2)² + z² = 16

(x-4)² + (y-(-2))² + (z-0)² = 4²

thus we have a=4 , b= -2 , c= 0 and R=4

User Rawdog
by
7.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories