Answer:
![\mu = 11](https://img.qammunity.org/2021/formulas/mathematics/college/sovqxvt12xw6ofv9lgdetksi6hr6qapqft.png)
![\sigma = 2.08](https://img.qammunity.org/2021/formulas/mathematics/college/azip53ctzbz5xtmqpj7vyyn5dmnzlwofya.png)
Explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:
![Z = (X - \mu)/(\sigma)](https://img.qammunity.org/2021/formulas/mathematics/college/c62rrp8olhnzeelpux1qvr89ehugd6fm1f.png)
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
Middle 85%.
Values of X when Z has a pvalue of 0.5 - 0.85/2 = 0.075 to 0.5 + 0.85/2 = 0.925
Above the interval (8,14)
This means that when Z has a pvalue of 0.075, X = 8. So when
. So
![Z = (X - \mu)/(\sigma)](https://img.qammunity.org/2021/formulas/mathematics/college/c62rrp8olhnzeelpux1qvr89ehugd6fm1f.png)
![-1.44 = (8 - \mu)/(\sigma)](https://img.qammunity.org/2021/formulas/mathematics/college/p3qvitzdnpk4j392duuuzsvxrs7i9czah0.png)
![8 - \mu = -1.44\sigma](https://img.qammunity.org/2021/formulas/mathematics/college/v6hfrkauxjegg6oqc65f14pfu6jjs25mxl.png)
![\mu = 8 + 1.44\sigma](https://img.qammunity.org/2021/formulas/mathematics/college/x9u36xxlxs6mzwvlolnp0w7ketyp0d2hcu.png)
Also, when X = 14, Z has a pvalue of 0.925, so when
![X = 8, Z = 1.44](https://img.qammunity.org/2021/formulas/mathematics/college/4uumutw3z6eb5v2ghxfemg9epx2pvghgpv.png)
![Z = (X - \mu)/(\sigma)](https://img.qammunity.org/2021/formulas/mathematics/college/c62rrp8olhnzeelpux1qvr89ehugd6fm1f.png)
![1.44 = (14 - \mu)/(\sigma)](https://img.qammunity.org/2021/formulas/mathematics/college/1v1y7ix7n589z0pqgcdfj814g6n2bnu5kn.png)
![14 - \mu = 1.44\sigma](https://img.qammunity.org/2021/formulas/mathematics/college/gvcp87f9g6ad4ne6drwp9vnr5wxew7qdu5.png)
![1.44\sigma = 14 - \mu](https://img.qammunity.org/2021/formulas/mathematics/college/r7c761jtep7u5skkm4n7exsdvolf5whj3j.png)
Replacing in the first equation
![\mu = 8 + 1.44\sigma](https://img.qammunity.org/2021/formulas/mathematics/college/x9u36xxlxs6mzwvlolnp0w7ketyp0d2hcu.png)
![\mu = 8 + 14 - \mu](https://img.qammunity.org/2021/formulas/mathematics/college/4orctbpl022637aszrifflwr8j4gc6e9f0.png)
![2\mu = 22](https://img.qammunity.org/2021/formulas/mathematics/college/ggv3ts4xdjoq7na1g7wi3trf14t04z3zm4.png)
![\mu = (22)/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/6b3tgkh1r912iomi3s6olmydjxcfcgxc3r.png)
![\mu = 11](https://img.qammunity.org/2021/formulas/mathematics/college/sovqxvt12xw6ofv9lgdetksi6hr6qapqft.png)
Standard deviation:
![1.44\sigma = 14 - \mu](https://img.qammunity.org/2021/formulas/mathematics/college/r7c761jtep7u5skkm4n7exsdvolf5whj3j.png)
![1.44\sigma = 14 - 11](https://img.qammunity.org/2021/formulas/mathematics/college/6wt88blufsq8dx3odr4oj5l3x08mkloe0r.png)
![\sigma = (3)/(1.44)](https://img.qammunity.org/2021/formulas/mathematics/college/4dlknjxokrz5utxb3zzd9zg1fn518endev.png)
![\sigma = 2.08](https://img.qammunity.org/2021/formulas/mathematics/college/azip53ctzbz5xtmqpj7vyyn5dmnzlwofya.png)