221k views
14 votes

\large \rm \sum \limits_(n = 0)^ \infty \frac{( { - 1)}^(1 + 2 + 3 + \dots + n) }{(2n + 1 {)}^(2) }

User Kevin Dion
by
3.5k points

1 Answer

8 votes

The sum we want is


\displaystyle \sum_(n=0)^\infty ((-1)^(T_n))/((2n+1)^2) = 1 - \frac1{3^2} - \frac1{5^2} + \frac1{7^2} + \cdots

where
T_n=\frac{n(n+1)}2 is the n-th triangular number, with a repeating sign pattern (+, -, -, +). We can rewrite this sum as


\displaystyle \sum_(k=0)^\infty \left(\frac1{(8k+1)^2} - \frac1{(8k+3)^2} - \frac1{(8k+7)^2} + \frac1{(8k+7)^2}\right)

For convenience, I'll use the abbreviations


S_m = \displaystyle \sum_(k=0)^\infty \frac1{(8k+m)^2}


{S_m}' = \displaystyle \sum_(k=0)^\infty ((-1)^k)/((8k+m)^2)

for m ∈ {1, 2, 3, …, 7}, as well as the well-known series


\displaystyle \sum_(k=1)^\infty ((-1)^k)/(k^2) = -(\pi^2)/(12)

We want to find
S_1-S_3-S_5+S_7.

Consider the periodic function
f(x) = \left(x-\frac12\right)^2 on the interval [0, 1], which has the Fourier expansion


f(x) = \frac1{12} + \frac1{\pi^2} \sum_(n=1)^\infty (\cos(2\pi nx))/(n^2)

That is, since f(x) is even,


f(x) = a_0 + \displaystyle \sum_(n=1)^\infty a_n \cos(2\pi nx)

where


a_0 = \displaystyle \int_0^1 f(x) \, dx = \frac1{12}


a_n = \displaystyle 2 \int_0^1 f(x) \cos(2\pi nx) \, dx = \frac1{n^2\pi^2}

(See attached for a plot of f(x) along with its Fourier expansion up to order n = 10.)

Expand the Fourier series to get sums resembling the
S'-s :


\displaystyle f(x) = \frac1{12} + \frac1{\pi^2} \left(\sum_(k=0)^\infty (\cos(2\pi(8k+1) x))/((8k+1)^2) + \sum_(k=0)^\infty (\cos(2\pi(8k+2) x))/((8k+2)^2) + \cdots \right. \\ \,\,\,\, \left. + \sum_(k=0)^\infty (\cos(2\pi(8k+7) x))/((8k+7)^2) + \sum_(k=1)^\infty (\cos(2\pi(8k) x))/((8k)^2)\right)

which reduces to the identity


\pi^2\left(\left(x-\frac12\right)^2-(21)/(256)\right) = \\\\ \cos(2\pi x) {S_1}' + \cos(4\pi x) {S_2}' + \cos(6\pi x) {S_3}' + \cos(8\pi x) {S_4}' \\\\ \,\,\,\, + \cos(10\pi x) {S_5}' + \cos(12\pi x) {S_6}' + \cos(14\pi x) {S_7}'

Evaluating both sides at x for x ∈ {1/8, 3/8, 5/8, 7/8} and solving the system of equations yields the dependent solution


\begin{cases}{S_4}' = (\pi^2)/(256) \\\\ {S_1}' - {S_3}' - {S_5}' + {S_7}' = (\pi^2)/(8\sqrt 2)\end{cases}

It turns out that


{S_1}' - {S_3}' - {S_5}' + {S_7}' = S_1 - S_3 - S_5 + S_7

so we're done, and the sum's value is
\boxed{(\pi^2)/(8\sqrt2)}.

\large \rm \sum \limits_(n = 0)^ \infty \frac{( { - 1)}^(1 + 2 + 3 + \dots + n) }{(2n-example-1
User Obenland
by
3.9k points