Answer:
a) Sample size of 96 or higher
b) Sample size of 196 or higher
c) Sample size of 385 or higher
Explanation:
We have that to find our
level, that is the subtraction of 1 by the confidence interval divided by 2. So:
![\alpha = (1-0.95)/(2) = 0.025](https://img.qammunity.org/2021/formulas/mathematics/college/b2sgcgxued5x1354b5mv9i43o4qgtn8yk6.png)
Now, we have to find z in the Ztable as such z has a pvalue of
.
So it is z with a pvalue of
, so
![z = 1.96](https://img.qammunity.org/2021/formulas/mathematics/college/zv05k6fi2atwaveb38qmkwkmh0vcr5vhx2.png)
Now, find the margin of error M as such
![M = z*(\sigma)/(√(n))](https://img.qammunity.org/2021/formulas/mathematics/college/cvh8tdoppqkhyobio78yaazk1nqj1870w9.png)
In which
is the standard deviation of the population and n is the size of the sample.
In this problem,
![\sigma = 0.25](https://img.qammunity.org/2021/formulas/mathematics/college/2vsialdz94ryxedspesj22h2l79ljl1mse.png)
a.The desired margin of error is $.10.
Sample size of n or higher when
. So
![M = z*(\sigma)/(√(n))](https://img.qammunity.org/2021/formulas/mathematics/college/cvh8tdoppqkhyobio78yaazk1nqj1870w9.png)
![0.1 = 1.96*(0.5)/(√(n))](https://img.qammunity.org/2021/formulas/mathematics/college/n7jni544k5mv8abiq6u3nlvcsrpl7tpz24.png)
![0.1√(n) = 1.96*0.5](https://img.qammunity.org/2021/formulas/mathematics/college/dq87yjlkyhqk86k6z6otp3z43co105fj9g.png)
![√(n) = (1.96*0.5)/(0.1)](https://img.qammunity.org/2021/formulas/mathematics/college/b12ul48vio68sn6n9n2qw0suqvoeeur9o4.png)
![√(n) = 9.8](https://img.qammunity.org/2021/formulas/mathematics/college/kylsxqmjvzdhgec0qx71u284o3mudyb4dv.png)
![√(n)^(2) = (9.8)^(2)](https://img.qammunity.org/2021/formulas/mathematics/college/6lp2nowc4g3bybqt9mbgtp25sqtof50iv2.png)
![n = 96](https://img.qammunity.org/2021/formulas/mathematics/college/w87gg8q5ox324ovxkkvs85r1x0dl0jedq5.png)
b.The desired margin of error is $.07.
Sample size of n or higher when
. So
![M = z*(\sigma)/(√(n))](https://img.qammunity.org/2021/formulas/mathematics/college/cvh8tdoppqkhyobio78yaazk1nqj1870w9.png)
![0.07 = 1.96*(0.5)/(√(n))](https://img.qammunity.org/2021/formulas/mathematics/college/j8bjd8zvkepmmnra7hmfmkivz6pvodf6oo.png)
![0.07√(n) = 1.96*0.5](https://img.qammunity.org/2021/formulas/mathematics/college/qk4c647hcuc1hr2s59sidc0a5sf3avgxkm.png)
![√(n) = (1.96*0.5)/(0.07)](https://img.qammunity.org/2021/formulas/mathematics/college/hiud5nt8lxruk0xa475coh47rs18kuvrsm.png)
![√(n) = 14](https://img.qammunity.org/2021/formulas/mathematics/college/b9yraw6p22fnjq78scf8z3kdie5i8pjium.png)
![√(n)^(2) = (14)^(2)](https://img.qammunity.org/2021/formulas/mathematics/college/3fr0i7ctqzwcx9f7oqwjf5emqcbvf6tsw4.png)
![n = 196](https://img.qammunity.org/2021/formulas/mathematics/college/zqvq0j4i8kcy06l3txnxsxhyb8ddqgtuqw.png)
c.The desired margin of error is $.05.
Sample size of n or higher when
. So
![M = z*(\sigma)/(√(n))](https://img.qammunity.org/2021/formulas/mathematics/college/cvh8tdoppqkhyobio78yaazk1nqj1870w9.png)
![0.05 = 1.96*(0.5)/(√(n))](https://img.qammunity.org/2021/formulas/mathematics/college/yurvgwrzrn2fytxut444oarbsshyp04nb4.png)
![0.05√(n) = 1.96*0.5](https://img.qammunity.org/2021/formulas/mathematics/college/hqc7lolsg3ml7joql5zjjrkv2vk97aev6z.png)
![√(n) = (1.96*0.5)/(0.05)](https://img.qammunity.org/2021/formulas/mathematics/college/8ool2a95ne0tpelyx9q3iaonb5kli2wxf4.png)
![√(n) = 19.6](https://img.qammunity.org/2021/formulas/mathematics/college/mbwubrk7s3qc6iod00ot3q5xx6eo0hf06u.png)
![√(n)^(2) = (19.6)^(2)](https://img.qammunity.org/2021/formulas/mathematics/college/zsh8ldxly3o9h26q3zlos3ff0837vx4k4a.png)
![n = 384.1](https://img.qammunity.org/2021/formulas/mathematics/college/dwo1fi2dy0y8hdo3k0tkwsrbh0oxa8w9cd.png)
Rounding up, sample size of 385 or higher