183k views
1 vote
Find the difference. (9/x^2-9x)-(6/x^2-81)

1 Answer

1 vote

The difference is
$(3 x+81)/(x(x-9)(x+9))$

Step-by-step explanation:

The expression is
$\left((9)/(x^(2)-9 x)\right)-\left((6)/(x^(2)-81)\right)$

Removing the parenthesis, we have,


$\left(9)/(x^(2)-9 x)\right-\left(6)/(x^(2)-81)\right$

Factoring the terms
$x^(2)-9 x$ and
$x^(2)-81$, we get,


$(9)/(x(x-9))-(6)/((x+9)(x-9))$

Taking LCM, we get,


$(9(x+9)-6x)/(x(x-9)(x+9))}$

Simplifying the numerator, we get,


$(9x+81-6x)/(x(x-9)(x+9))}$

Subtracting the numerator, we have,


$(3 x+81)/(x(x-9)(x+9))$

Hence, the difference is
$(3 x+81)/(x(x-9)(x+9))$

User Florin Mircea
by
4.9k points