Answer:
There are 15 different possible values of n:
{-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7}
Explanation:
The given inequality is
![{x}^(2) + nx + 15 \: < \: 0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/yk59fsrff06yaydmflhwm94ln96cob9748.png)
For to have no solution, the discriminant must be less than zero.
This means that:
![{n}^(2) - 4 * 1 * 15 \: < \: 0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/1nbn77blgrgizbvg9vwjhrs0fp3dzq4ihq.png)
![{n}^(2) - 60 \: < \: 0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/rqlsen444s12iflebwty9epdzhn94v89vf.png)
![{(n} - 4 √(15) )(n + 4 √(15) ) \: < \: 0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ga94xv7lto7r0xmwdb1wiruf7g8xetjzce.png)
This implies that:
![- 7.75 \: < \: n \: < \: 7.75](https://img.qammunity.org/2021/formulas/mathematics/middle-school/v9lgz3idttewcykpqi9o088bm0m7ehzlzv.png)
The integer values are , {-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7}