Answer:
A) T = 95.12 N, B) L_man - 0.59 L
Step-by-step explanation:
A) For this problem we must use the equilibrium, translational and rotational equations
∑τ = 0
Let's fix our reference system at the top of the stairs, the anti-clockwise rotation is positive
W x/2 + W_man x_man - T y = 0 (1)
Let's look with trigonometry for distances
cos 52 = x / L
x = L cos 52
sin 52 = y / L
y = L sin52
The man indicates it is at L / 3, so its distance is
x_man = L/3 cos 52
We replace
W L/2 cos 52 + W_man L/3 cos 52 - T L sin 52 = 0
T = cos 52 (W / 2 + W_man / 3) / sin 52
T = cos 52 (137/2 + 16.3 9.8 / 3) / sin 52
T = 121.75 ctan 52
T = 95.12 N
B) let's look for the maximum distance (x) that can be before breaking the rope
L_man = (-W L / 2 cos 52 + T L sin 52) / W_man cos 52
L_man / L = (-W / 2 ctan 52 + T tan 52) / W_man
L_man / L = ( -137/2 ctan 52 + 116 tan 52) / (16.3 9.8)
L_man / L = (-53.518 +148.47) /159.74
L_ma / L = 0.594
The man then climb a length of 0,59 (59%) along the length of the stairs