Answer:
The standard form of the equation of the parabola will be
.
Explanation:
To find he equation of the parabola with a focus at (0, 8) and
a directrix at y = -8, we may use the distance formula.
![√(\left(x-0\right)^2+\left(y-8\right)^2)=√(\left(x-x\right)^2+\left(y+8\right)^2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/yfubt1c40jewteac2ugq86qm3q5moken51.png)
![\mathrm{Square\:both\:sides}](https://img.qammunity.org/2021/formulas/mathematics/high-school/x0cys1ekqkyo58uvehwtqqdqaaw9s8lvqm.png)
![......A](https://img.qammunity.org/2021/formulas/mathematics/high-school/u9hd87sqdys7qe1arcvfllprglj4m0j5o2.png)
Solving
![\left(√(\left(x-0\right)^2+\left(y-8\right)^2)\right)^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/icwp8whzgzlr1rrfvsvqg0q9sza4nhmnat.png)
![\mathrm{Apply\:radical\:rule}:\quad √(a)=a^{(1)/(2)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/fsc1rrs5v14lx89yghta1lwbsgmb4gcxa7.png)
![=\left(\left(\left(x-0\right)^2+\left(y-8\right)^2\right)^{(1)/(2)}\right)^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/y7lsu7ax8s33ttlkalwx15bvvyueftz2sa.png)
![\mathrm{Apply\:exponent\:rule}:\quad \left(a^b\right)^c=a^(bc)](https://img.qammunity.org/2021/formulas/mathematics/high-school/akd838pkb1s0n50psmx1op92v4il7xfztv.png)
![=\left(\left(x-0\right)^2+\left(y-8\right)^2\right)^{(1)/(2)\cdot \:2}](https://img.qammunity.org/2021/formulas/mathematics/high-school/rs2gfh5sf93m5uw004a02hlsqhlsin6i92.png)
∵
![(1)/(2)\cdot \:2=1](https://img.qammunity.org/2021/formulas/mathematics/high-school/521pxd2gt9u2rsm5gd8i00b87cvyeme933.png)
∵
![\mathrm{Expand\:}\left(x-0\right)^2+\left(y-8\right)^2:\quad x^2+y^2-16y+64](https://img.qammunity.org/2021/formulas/mathematics/high-school/usfvh98dxcxkk4acdrenqx7k34877h2mjg.png)
Similarly
![\mathrm{Expand\:}\left(√(\left(x-x\right)^2+\left(y+8\right)^2)\right)^2:\quad \left(y+8\right)^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/ocujwgywn8z4ies6b0gctpkflh1tfizehy.png)
So, the equation A becomes
![x^2+y^2-16y+64=\left(y+8\right)^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/flmle42y7flhlydq0910qx0ukdsyynsz92.png)
![x^2+y^2-16y+64=y^2+16y+64](https://img.qammunity.org/2021/formulas/mathematics/high-school/dbqlidmu7acfuqgdf4pbqyap9rc9n2001a.png)
![y^2-16y=y^2+16y-x^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/5o5u0e09tx3d90m77szf4s7ea985hg9ah3.png)
![-32y=-x^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/dpgc7c1pf2t0xmn6prbsex6oonuij0bzi5.png)
![(-32y)/(-32)=(-x^2)/(-32)](https://img.qammunity.org/2021/formulas/mathematics/high-school/29l045foachpcm3bs4w4hoag66aby087dx.png)
![y=(x^2)/(32)](https://img.qammunity.org/2021/formulas/mathematics/high-school/5cjn5r1mr4pprkxaaxr3zkglxyj7xmp5z8.png)
Therefor, the standard form of the equation of the parabola will be
.