141k views
2 votes
Find the standard form of the equation of the parabola with a focus at (0, 8) and a directrix at y = -8.

y = one divided by thirty twox2
y2 = 8x
y2 = 32x
y = one divided by eightx2

User Charbinary
by
3.2k points

1 Answer

4 votes

Answer:

The standard form of the equation of the parabola will be
y=(x^2)/(32).

Explanation:

To find he equation of the parabola with a focus at (0, 8) and

a directrix at y = -8, we may use the distance formula.


√(\left(x-0\right)^2+\left(y-8\right)^2)=√(\left(x-x\right)^2+\left(y+8\right)^2)


\mathrm{Square\:both\:sides}


\left(√(\left(x-0\right)^2+\left(y-8\right)^2)\right)^2=\left(√(\left(x-x\right)^2+\left(y+8\right)^2)\right)^2
......A

Solving


\left(√(\left(x-0\right)^2+\left(y-8\right)^2)\right)^2


\mathrm{Apply\:radical\:rule}:\quad √(a)=a^{(1)/(2)}


=\left(\left(\left(x-0\right)^2+\left(y-8\right)^2\right)^{(1)/(2)}\right)^2


\mathrm{Apply\:exponent\:rule}:\quad \left(a^b\right)^c=a^(bc)


=\left(\left(x-0\right)^2+\left(y-8\right)^2\right)^{(1)/(2)\cdot \:2}


=\left(x-0\right)^2+\left(y-8\right)^2
(1)/(2)\cdot \:2=1


=x^2+y^2-16y+64
\mathrm{Expand\:}\left(x-0\right)^2+\left(y-8\right)^2:\quad x^2+y^2-16y+64

Similarly


\mathrm{Expand\:}\left(√(\left(x-x\right)^2+\left(y+8\right)^2)\right)^2:\quad \left(y+8\right)^2

So, the equation A becomes


x^2+y^2-16y+64=\left(y+8\right)^2


x^2+y^2-16y+64=y^2+16y+64


y^2-16y=y^2+16y-x^2


-32y=-x^2


(-32y)/(-32)=(-x^2)/(-32)


y=(x^2)/(32)

Therefor, the standard form of the equation of the parabola will be
y=(x^2)/(32).

User LoveMeow
by
3.6k points