Answer:
Therefore the auxiliary solution is
![y=A e^(5x)+Be^(-4x)](https://img.qammunity.org/2021/formulas/mathematics/college/wgdhs436c8xjalycy3ey40a14ip2o7u57l.png)
Therefore
are linearly independent
Explanation:
Given, the differential equation is
y"-y'-20 y=0
Let
be the solution of the above differential equation.
y'=
and
![y](https://img.qammunity.org/2021/formulas/mathematics/college/n3u1m2o8ymnqmzfkhxlo3scj7nj3tc88fi.png)
Then the above differential equation becomes
![m^2e^(mx)-me^(mx)-20 e^(mx)=0](https://img.qammunity.org/2021/formulas/mathematics/college/cyxao8hwvyj1ssaadbc1aeyjo0epfhqwju.png)
![\Rightarrow e^(mx)(m^2-m-20)=0](https://img.qammunity.org/2021/formulas/mathematics/college/t3djnx2twa2kn852m5ru7sz53z4zmltd5w.png)
![\Rightarrow (m^2-m-20)=0](https://img.qammunity.org/2021/formulas/mathematics/college/r91gd3tfi8f5o3b57t11vme1opdq2qdt7o.png)
![\Rightarrow m^2-5m+4m-20=0](https://img.qammunity.org/2021/formulas/mathematics/college/sh1juy0urbg7sg9l92uydjbed4lt585lu6.png)
![\Rightarrow m(m-5) +4(m-5)=0](https://img.qammunity.org/2021/formulas/mathematics/college/66vc3ftmbq82usaub0cbzr57e1rzhyou4v.png)
![\Rightarrow (m-5)(m+4)=0](https://img.qammunity.org/2021/formulas/mathematics/college/93jtyppoo90b9psu4zd8a8valgc6f51tpg.png)
![\Rightarrow m=5,-4](https://img.qammunity.org/2021/formulas/mathematics/college/1koujk8vxhr1r2r612p4y8th2uwr830xn6.png)
If two roots of m are real and distinct then the auxiliary solution is
[where a and b are two roots of m]
Therefore the auxiliary solution is
![y=A e^(5x)+Be^(-4x)](https://img.qammunity.org/2021/formulas/mathematics/college/wgdhs436c8xjalycy3ey40a14ip2o7u57l.png)
Wronskian
![W(e^(-4x),e^(5x))=\left[\begin{array}{cc}e^(-4x)&e^(5x)\\-4e^(-4x)&5e^(5x)\end{array}\right]](https://img.qammunity.org/2021/formulas/mathematics/college/agabpxt6l9j4lkx6wfvptoyflhvuutyzp5.png)
![=5e^(-4x)e^(5x)-e^(5x)(-4e^(-4x))](https://img.qammunity.org/2021/formulas/mathematics/college/48kc1z9q8vu45v0kxsomz2hqgtlj1kh6kz.png)
≠0
Therefore
are linearly independent.[ ∵W≠0]