Answer: The total heat required for the conversion process is 1228.5 J
Step-by-step explanation:
The processes involved in the given problem are:
![1.)Ag(s)(25^oC,298K)\rightarrow Ag(s)(962^oC,1235K)\\2.)Ag(s)(962^oC,1235K)\rightarrow Ag(l)(962^oC,1235K)](https://img.qammunity.org/2021/formulas/chemistry/college/8c0cag82g8z9qzo4mxcxsu8g0pqp2x2f1x.png)
To calculate the amount of heat absorbed, we use the equation:
![q_1=m* C_(p,l)* (T_(2)-T_(1))](https://img.qammunity.org/2021/formulas/chemistry/college/oda4erbzxqway436ho9n98whbrglmhfo2c.png)
where,
= amount of heat absorbed = ?
= specific heat capacity = 0.235 J/g.K
m = mass of silver = 9.70 g
= final temperature = 1235 K
= initial temperature = 298 K
Putting all the values in above equation, we get:
![q_1=9.70g* 0.235J/g.K* (1235-298)K=213.6J](https://img.qammunity.org/2021/formulas/chemistry/college/70of2669lyyhcvrn3yde4ym7gygo5ha0vt.png)
To calculate the amount of heat released, we use the equation:
![q_2=m* L_f](https://img.qammunity.org/2021/formulas/chemistry/college/2v6de9hak7iprhxq7j1alytsre93bms9vt.png)
where,
= amount of heat absorbed = ?
m = mass of silver = 9.70 g
= latent heat of fusion = 11.3 kJ/mol =
(Conversion factor: 1 kJ = 1000 J; Molar mass of silver = 108 g/mol)
Putting all the values in above equation, we get:
![q_2=9.70g* 104.63J/g=1014.9J](https://img.qammunity.org/2021/formulas/chemistry/college/kf3rt4jd6tt6s3lifoxjgz3w2lo3vrt11h.png)
Total heat required for the conversion =
![q_1+q_2](https://img.qammunity.org/2021/formulas/chemistry/college/a9cfkohxtsybl7k4zbfe28s0o8eba4pyci.png)
Total heat required for the conversion =
![[213.6+1014.9]J=1228.5J](https://img.qammunity.org/2021/formulas/chemistry/college/u5uwoh9w4bap0aarrlvxqi55a04owhj3ux.png)
Hence, the total heat required for the conversion process is 1228.5 J