66.2k views
3 votes
The question is in the attachment!!​

The question is in the attachment!!​-example-1
User MatLecu
by
3.4k points

1 Answer

12 votes

Answer:


\qquad\quad\hookrightarrow{\sf { 1000(e-1)}}

Solution:


\begin{aligned}&\longrightarrow \int_(0) ^(1000) {e}^( - |x| )dx = \sum_(k = 0)^(999) \int_(k)^(k + 1)e ^(x - |x| )dx \\ \\ &\longrightarrow\int_(0) ^(1000) {e}^( - |x| )dx = \sum_(k = 0)^(999) \int_(k)^(k + 1)e^(x - k)dx \\\\&\longrightarrow\int_(0) ^(1000) {e}^( - |x| )dx = \sum_(k = 0)^(999)e^{x - k \big |_(k)^ {k + 1}} \\ \\& \longrightarrow\int_(0) ^(1000) {e}^( - |x| )dx = \sum_(k = 0)^ {999}(e - 1)\\\\&\longrightarrow\int_(0) ^(1000) {e}^( - |x| )dx = 1000(e - 1)\end{aligned}

User Emyl
by
3.6k points