Answer:
So the tank contains 1866.67 lbs of salt after 250 minutes.
Explanation:
The tank salt concentration at any moment is given as
![SC_(tank)=(Q)/(current \,amount\, of\, water\, solution) =(Q)/(400 + 2t)](https://img.qammunity.org/2021/formulas/mathematics/college/lh7mxaljyc7j0bink45p8xf65o2i8svpls.png)
Now the rate of change of concentration is given as
![(dQ)/(dt) = rate_(in) - rate_(out) =SC_(in) * FR_(in) - SC_(tank) * FR_(out)](https://img.qammunity.org/2021/formulas/mathematics/college/hv4vzm1n3psglkh9rf378ik2zt35tmymmi.png)
Here
SC_in is given as 2 lb/gal
FR_in is given as 3 gal/min
SC_tank is given in above equation
FR_out is given as 1 gal/min
Putting all in the equation gives
![(dQ)/(dt) = SC_(in) * FR_(in) - SC_(tank) * FR_(out)\\(dQ)/(dt) =2 * 3- (Q)/(400+2t)* 1\\(dQ)/(dt) =6- (Q)/(400+2t)* 1\\(dQ)/(dt) +(Q)/(400+2t)=6](https://img.qammunity.org/2021/formulas/mathematics/college/p1ibhgpwpgw8cd4zn58evso9mdkia0qj10.png)
Multiplying by the integrating factor of
on both sides
![(√(400+2t))(dQ)/(dt) +(√(400+2t))(Q)/(400+2t)=6(√(400+2t)\\(√(400+2t))(dQ)/(dt) +\frac{{Q}}{√(400+2t)}=6(√(400+2t))\\(d)/(dt)(Q(√(400+2t)))=6(√(400+2t))](https://img.qammunity.org/2021/formulas/mathematics/college/ryi253vzn4idmxz1u7w19b7w8izqag152j.png)
Integrating both sides with respect to t gives
![Q\left(t\right)=\frac{\left(2\left(2t+400\right)^{(3)/(2)}+c_1\right)√(400+2t)}{400+2t}](https://img.qammunity.org/2021/formulas/mathematics/college/s0z7u5308x0tu2rv999frp4dxlovhnkc28.png)
For the initial condition Q(0)=100 lbs so the equation is given as
![100=((0+c_1)√(400))/(400+0)\\c_1=((400 * 100))/(√(400))=2000](https://img.qammunity.org/2021/formulas/mathematics/college/w7i4ckro6k781yy8r9l4jffbdbmacwv1vq.png)
So the equation is
![Q\left(t\right)=\frac{\left(2\left(2t+400\right)^{(3)/(2)}+2000\right)√(400+2t)}{400+2t}](https://img.qammunity.org/2021/formulas/mathematics/college/gt16rtug7s43zyhdwm9n6kjq2qsd1yq141.png)
Solving for the t=250
![Q\left(250\right)=\frac{\left(2\left(2(250)+400\right)^{(3)/(2)}+2000\right)√(400+2(250))}{400+2(250)}\\Q\left(250\right)=1866.67 lbs](https://img.qammunity.org/2021/formulas/mathematics/college/h0gzjmgdpeee7ywmp4gguyvzjlg8khv5zd.png)