The length of the rug is 4 ft.
The width of the rug is 2.5 ft.
Step-by-step explanation:
The area of the rug is 10 ft.
The length of the rug be l.
Let us convert the inches to feet.
Thus,
![18 inches = 1.5 ft](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xo5avlx3ywz6e0fvutcqp0v6sfa2xqwikk.png)
Thus, the length of the rug is
![l=1.5+w](https://img.qammunity.org/2021/formulas/mathematics/middle-school/978l5wycxnbqxd0hba57ko4wdoreizk9p5.png)
Let the width of the rug be w.
Substituting these values in the formula of area of the rectangle, we get,
![A=length* width](https://img.qammunity.org/2021/formulas/mathematics/high-school/tl1jyvsp7hxqk3gtefb39ft3xdpxdcjmm7.png)
![10=(1.5+w)(w)\\10=1.5w+w^2\\w^2+1.5w-10=0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/j25n0imfjsxy0qae9qu7d4osyhag73gwsc.png)
Solving the expression using the quadratic formula,
![$w=\frac{-b \pm \sqrt{b^(2)-4 a c}}{2 a}$](https://img.qammunity.org/2021/formulas/mathematics/middle-school/vh70umb2hqt8vlcowppgb32op93ai2eynt.png)
Substituting the values, we have,
![$w=\frac{-15 \pm \sqrt{15^(2)-4 \cdot 10(-100)}}{2 \cdot 10}\\](https://img.qammunity.org/2021/formulas/mathematics/middle-school/t02f3sw5ju70c09fzz42paw945wyb3cutt.png)
![$w=(-15 \pm √(4225))/(20)$](https://img.qammunity.org/2021/formulas/mathematics/middle-school/mca7p2qrw7rgavskakswlh81we5sdx2v0x.png)
![$w=(-15 \pm 65)/(2 0)$](https://img.qammunity.org/2021/formulas/mathematics/middle-school/lrc4nacinzxtwrff8ggsblhmx4lrq2qsrf.png)
Thus,
and
![w=(-15 - 65)/(2 0)\\w=(-80)/(20) \\w=-4](https://img.qammunity.org/2021/formulas/mathematics/middle-school/f4k65vrp39fg498hyzvzw2cq88njrj8hto.png)
Since, the value of w cannot be negative, the value of w is 2.5ft
Thus, the width of the rug is 2.5ft
Substituting
in
, we get,
![l=1.5+2.5\\l=4](https://img.qammunity.org/2021/formulas/mathematics/middle-school/jdbs65uh403an8p6ke1unl2xlqcsotuanu.png)
Thus, the length of the rug is 4 ft.