Answer:
(a) -22.00 units
(b) 22.77 units
Step-by-step explanation:
Given vectors are r and s
Where;
r = |r| = 4.25 and ∠r = 312° measured anticlockwise
s = |s| = 7.45 and ∠s = 86° measured anticlockwise
First, let's calculate the angle between vectors r and s by representing them in the figure below;
y | /s
| /
| /
| /
|/ )86° x
|\) 48°
| \
| \
| \
| \ r
To get the acute angle between r and the +x axis, subtract the reflex angle of r (312°) from 360° as follows;
360 - 312 = 48°
As shown in the diagram, the angle between vectors r and s is 48° + 86° = 134°
Now,
(a) The (r)(s) represents the dot or scalar product of the two vectors and it is given as;
(r) (s) = r x s cos θ ---------------------------(i)
Where;
r = magnitude of vector r = 4.25
s = magnitude of vector s = 7.45
θ is the angle between the two vectors r and s = 134°
Substitute these values into equation (i) as follows;
(r) (s) = 4.25 x 7.45 cos 134°
(r) (s) = 4.25 x 7.45 x -0.6947
(r) (s) = 31.66 x -0.6947
(r) (s) = -22.00 units
(b) The (r) X (s) represents the vector product of the two vectors and it is given as;
(r) (s) = r x s sin θ ---------------------------(ii)
Where;
r = magnitude of vector r = 4.25
s = magnitude of vector s = 7.45
θ is the angle between the two vectors r and s = 134°
Substitute these values into equation (ii) as follows;
(r) (s) = 4.25 x 7.45 sin 134°
(r) (s) = 4.25 x 7.45 x 0.7193
(r) (s) = 31.66 x 0.7193
(r) (s) = 22.77 units