158k views
4 votes
Two forces with magnitudes of 150 and 100 pounds act on an object at angles of 40° and 170°, respectively. Find the direction and magnitude of the resultant force. Round to two decimal places in all intermediate steps and in your final answer.

User Rburhum
by
4.0k points

1 Answer

4 votes

Denote the two force vectors by
\vec F_1 and
\vec F_2, respectively.

Compute the horizontal and vertical components:


F_(1,x)=(150\,\mathrm{lb})\cos40^\circ\approx114.91\,\mathrm{lb}


F_(1,y)=(150\,\mathrm{lb})\sin40^\circ\approx96.42\,\mathrm{lb}


F_(2,x)=(100\,\mathrm{lb})\cos170^\circ\approx-98.49\,\mathrm{lb}


F_(2,y)=(100\,\mathrm{lb})\sin170^\circ\approx17.37\,\mathrm{lb}

The resultant force
\vec F=\vec F_1+\vec F_2 has components equal to the sum of the corresponding components of
\vec F_1,\vec F_2:


F_x=F_(1,x)+F_(2,x)\approx16.43\,\mathrm{lb}


F_y=F_(1,y)+F_(2,y)\approx113.78\,\mathrm{lb}

The resultant force then has magnitude


\|\vec F\|=\sqrt{{F_x}^2+{F_y}^2}\approx\boxed{114.96\,\mathrm{lb}}

and direction
\theta, where


\tan\theta=(F_y)/(F_x)\implies\boxed{\theta\approx81.79^\circ}

User Dhiraj
by
3.2k points