Answer:
40 N
Step-by-step explanation:
We are given that
Speed of system is constant
Therefore, acceleration=a=0
Tension applied on block B=T=50 N
Friction force=f=10 N
We have to find the friction force acting on block A.
Let T' be the tension in string connecting block A and block B and friction force on block A be f'.
For Block B

Where
=Mass of block B
Substitute the values


For block A

Where
Mass of block A
Substitute the values


Hence, the friction force acting on block A=40 N