116k views
0 votes
1. A) Is there a number x ∈ R, so cos x = 0.8 and sin x = 0.2? b) Same question for cos x = 0.8 and sin x = 0.6 2. Show that for any x ∈ R: a) sin^{3}x + cos^{3} = (sin x + cos x)(1- sin x * cos x) b) sin^{4} x + cos^{4} x = 1 - 2sin^{2} x * cos^{2}x

1 Answer

4 votes

Answer:

1Ai)
x = 36.9^(o)

1Aii)
x = 11.5^(o)

Explanation:

Question 1a


cosx=0.8\\x= cos^(-1)(0.8)\\ x= 36.9^(o)


sinx=0.2\\x=sin^(-1)(0.2)\\ x=11.5^(o)

Question 2a


sin^(3)x+cos^(3)x = sin^(2)x(sinx)+cos^(2)x(cosx)\\ \\= (1-cos^(2)x)sinx+(1-sin^(2)x)cosx\\ \\= sinx-sinxcos^(2)x+cosx-sin^(2)xcosx\\ \\=sinx-sin^(2)xcosx+cosx-sinxcos^(2)x\\

Factorize


sinx(1-sinxcosx)+cosx(1-sinxcosx)\\\\=(sinx+cosx)(1-sinxcosx)\\\\=(sinx+cosx)(1-sinx*cosx)

Question 2b


sin^(4)x+ cos^(4)x=(sin^(2)x)^(2) + (cos^2}x)^(2) \\But , a^(2) +b^(2)=(a+b)^(2)-2ab\\ \\a = sin^(2)x\\ b = cos^(2)x\\\\Therefore, (sin^(2)x)^(2) + (cos^2}x)^(2) = (sin^(2)x+cos^(2)x)^(2)-2sin^(2)xcos^(2)x \\\\But, sin^(2)x+cos^(2)x = 1\\\\Therefore, (sin^(2)x+cos^(2)x)^(2)-2sin^(2)xcos^(2)x = 1 - 2sin^(2)xcos^(2)x\\\\= 1 - 2sin^(2)x*cos^(2)x

User Supita
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories