Final answer:
The ratio of phenotypes in the F2 generation indicates that two genes are involved in the production of color in wheat, with a total of four additive alleles influencing the phenotype. True-breeding medium red (RaRa) crossed with white (rraa) would yield medium-red F1 offspring. F2 would show a ratio of 3 medium-red to 1 white.
Step-by-step explanation:
The phenotypic ratio of the F2 generation, which is given as 1 dark-red : 4 medium-dark-red : 6 medium-red : 4 light-red : 1 white, suggests the involvement of two genes in color production due to the pattern not matching a simple 3:1 monohybrid cross. It fits a modified dihybrid cross ratio of 1:4:6:4:1, which is reminiscent of a 9:3:3:1 ratio with intermediate forms due to incomplete dominance.
To determine the number of additive alleles needed for each phenotype:
Dark-red: All four additive alleles are present (2 from each gene).
Medium-dark-red: Three additive alleles are present.
Medium-red: Two additive alleles are present.
Light-red: One additive allele is present.
White: No additive alleles are present.
We can assign the symbols R for the allele contributing to red color and r for its absence from one gene, and A for the allele contributing to red color and a for its absence from the second gene.
Thus, possible genotypes for medium red are RaRa or rrAA. For light red, the genotype could be Ra with the other gene being rr or aa, such as Rraa or Aarr.
For a cross between a true-breeding medium red plant (RaRa) and a white plant (rraa), the F1 would all be Rara (medium-red), and the F2 generation would show a 3:1 phenotypic ratio of medium-red (R-) to white (-rr) since the white parental plant can only contribute recessive alleles.