Answer:
a) The force of attraction between these two ions at their equilibrium interionic separation (i.e., when the ions just touch one another) is - 2.01 × 10⁻⁹ N
b) The force of repulsion at this same separation distance is 2.01 × 10⁻⁹ N
Step-by-step explanation:
F = kq₁q₂/r²
r = 0.35 + 0.129 (since the ions are just touching each other)
r = 0.479 nm = 4.79 × 10⁻¹⁰ m
Since the first ion is a divalent cation, Z₁ = +2 and the monovalent anion, Z₂ = -1
q = Ze; e = 1.602 × 10⁻¹⁹ C
K = 8.99 × 10⁹ Nm²/C²
F = (8.99 × 10⁹)(1.602 × 10⁻¹⁹)²(2)(-1)/(4.79 × 10⁻¹⁰)² = - 2.01 × 10⁻⁹ N
b) At equilibrium,
Force of attraction + Force of repulsion = 0
Force of repulsion = -(Force of attraction) = 2.01 × 10⁻⁹ N