Answer:
Cu = 1453.72J/Kg°C
The heat capacity of the liquid is 1453.72J/Kg°C
Step-by-step explanation:
At equilibrium, assuming no heat loss to the surrounding we can say that;
Heat gained by ice + heat gained by cold water = heat loss by hot unknown liquid (24°C) + heat loss by aluminium calorimeter.
Given;
Mass of ice = mass of cold water = mc = 30g = 0.03kg
Mass of hot unknown liquid mh= 300g = 0.3kg
Mass of aluminium calorimeter ma= 100g = 0.1 kg
change in temperature cold ∆Tc = (4-0) = 4°C
Change in temperature hot ∆Th = 24-4 = 20°C
Specific heat capacity of water Cw= 4186J/Kg°C
Specific heat capacity of aluminium Ca = 900J/kg°C
Specific heat capacity of unknown liquid Cu =?
Heat of condensation of ice Li = 334000J/Kg
So, the statement above can be written as.
mcLi + mcCw∆Tc = maCa∆Th + mhCu∆Th
Making Cu the subject of formula, we have;
Cu = [mcLi + mcCw∆Tc - maCa∆Th]/mh∆Th
Substituting the values we have;
Cu = (0.03×334000 + 0.03×4186×4 - 0.1×900×20)/(0.3×20)
Cu = 1453.72J/Kg°C
the heat capacity of the liquid is 1453.72J/Kg°C