155k views
2 votes
four component system Assume A, B, C, and D function independently. If the probabilities that A, B, C, and D fail are 0.1, 0.2, 0.05, and 0.3 respectively, what is the probability that the system functions?

User Jivay
by
8.1k points

1 Answer

2 votes

Answer:

then the probability of failure goes between 0.00003 (0.003%) and 0.5212 (52.12%) depending on the system configuration

Explanation:

the solution depends on the system configuration, that is , if some component ( lets say A) is run in parallel from other , or is in series

if a component is run in parallel then the system fails only if all the components in parallel fails

but if the system is connected in series , the system will fail only if one of the components the serie fails.

Therefore denoting the events A= fails A , B= fails B , C= fails C , D= fails D , we have:

- lower bound of probability of failure = all components are in parallel

probability of failure P(A∩B∩C∩D)=P(A)*P(B)*P(C)*P(D)= 0.1 * 0.2 * 0.05 * 0.3 = 0.00003 (0.003%)

- upper bound of probability of failure = all components are in parallel

probability of failure P(A∪B∪C∪D)= P(A) + P(B) + P(C) +P(D) - P(A ∩ B) - P(A ∩ C) - P(A ∩ D)- P(B ∩ C) - P(B ∩ D) - P(C ∩ D) + P(A ∩ B ∩ C) + P(A ∩ B ∩ D) + P(A ∩ C ∩ D) + P(B ∩ C ∩ D) - P(A ∩ B ∩ C ∩ D) = (P(A) + P(B) + P(C) +P(D)) - ( P(A)*P(B) + P(A)*P(C) + P(A)*P(D) + P(B)*P(C) + P(B)*P(D) + P(C)*P(D) ) + P(A)*P(B)*P(C) + P(A)*P(B)*P(D)+ P(A)*P(C)*P(D)+ P(B)*P(C)*P(D) - P(A)*P(B)*P(C)*P(D)

replacing values

P(A∪B∪C∪D)= 0.5212 (52.12%)

then the probability of failure goes between 0.00003 (0.003%) and 0.5212 (52.12%) depending on the system configuration

User Izbassar Tolegen
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.