Answer:
3.84 erg
Step-by-step explanation:
According to Hooke's law, the energy required to stretch a spring by x length is
![E = kx^2/2](https://img.qammunity.org/2021/formulas/physics/college/tlbmsuz44q7ap5h07h7ta54zq6a7g1fulk.png)
where k is the spring constant. We can plug in E = 4 and x = 10 to estimate k
![4 = k10^2/2](https://img.qammunity.org/2021/formulas/physics/college/186nl4vpozzjv5tbvs2togqxkh39w6ef7n.png)
![4 = 50k](https://img.qammunity.org/2021/formulas/physics/college/wdhzj526dudzyqfb7grqmbipmkn4ddybxf.png)
![k = 4 / 50 = 0.08](https://img.qammunity.org/2021/formulas/physics/college/nhn4ljqpavvhkh2vb5soo46uo3e07igjk2.png)
To stretch 4cm further (at 14cm), the total work required is
![E_2 = kx_2^2 = 0.08*14^2/2 = 7.84](https://img.qammunity.org/2021/formulas/physics/college/xpodwmt3lulac7nlvcparoul4c7e8nxle4.png)
The additional work needed is 7.84 - 4 = 3.84 erg