163k views
0 votes
A group of students estimated the length of one minute without reference to a watch or​ clock, and the times​ (seconds) are listed below. Use a 0.10 significance level to test the claim that these times are from a population with a mean equal to 60 seconds. Does it appear that students are reasonably good at estimating one​ minute? 75 88 51 73 49 31 69 74 72 59 72 81 99 101 73 What are the null and alternative​ hypotheses? A. Upper H 0​: muequals60 seconds Upper H 1​: munot equals60 seconds B. Upper H 0​: munot equals60 seconds Upper H 1​: muequals60 seconds C. Upper H 0​: muequals60 seconds Upper H 1​: muless than60 seconds D. Upper H 0​: muequals60 seconds Upper H 1​: mugreater than60 seconds Determine the test statistic. nothing ​(Round to two decimal places as​ needed.) Determine the​ P-value. nothing ​(Round to three decimal places as​ needed.) State the final conclusion that addresses the original claim. ▼ Fail to reject Reject Upper H 0. There is ▼ sufficient not sufficient evidence to conclude that the original claim that the mean of the population of estimates is 60 seconds ▼ is is not correct. It ▼ appears does not appear ​that, as a​ group, the students are reasonably good at estimating one minute.

User Wukong
by
7.9k points

1 Answer

1 vote

Answer:

It does not appear ​that, as a​ group, the students are reasonably good at estimating one minute.

Explanation:

We are given the following data in the question:

75, 88, 51, 73, 49, 31, 69, 74, 72, 59, 72, 81, 99, 101, 73

Formula:


\text{Standard Deviation} = \sqrt{\displaystyle\frac{\sum (x_i -\bar{x})^2}{n-1}}

where
x_i are data points,
\bar{x} is the mean and n is the number of observations.


Mean = \displaystyle\frac{\text{Sum of all observations}}{\text{Total number of observation}}


Mean =\displaystyle(1067)/(15) = 71.13

Sum of squares of differences = 4739.733


S.D = \sqrt{(4739.733)/(14)} = 18.39

Population mean, μ = 60 minutes

Sample mean,
\bar{x} = 71.13 minutes

Sample size, n = 15

Alpha, α = 0.10

Sample standard deviation, s = 18.39 minutes

First, we design the null and the alternate hypothesis


H_(0): \mu = 60\text{ minutes}\\H_A: \mu \\eq 60\text{ minutes}

We use Two-tailed t test to perform this hypothesis.

Formula:


t_(stat) = \displaystyle\frac{\bar{x} - \mu}{(s)/(√(n)) }

Putting all the values, we have


t_(stat) = \displaystyle(71.13 - 60)/((18.39)/(√(15)) ) = 2.34

Calculating the p-value from the table, we have,

P-value = 0.034354

Since the p-value is lower than the significance level, we fail to accept the null hypothesis and reject it. We accept the alternate hypothesis.

Thus, we conclude that it does not appear ​that, as a​ group, the students are reasonably good at estimating one minute.

User Eylay
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories