Answer:
part a)
p = 1.8222*10^-26 kgm/s
K.E(eV) =1.14*10^-3 eV
λ =0.0364 Angstroms
part b)
p = 5.3*10^-26 kgm/s
V_e = 5.82412*10^4 m/s
K.E(eV) = 9.634*10^-3 eV
Step-by-step explanation:
- Planck's constant h = 6.625*10^-34
- Velocity of an electron V_e = 2*10^6 cm/s
- Mass of an electron m_e = 9.1 * 10^-31 kg
part a)
Find:
Determine the electron energy in eV, the momentum, and the de Broglie wavelength (in angstroms).
Solution:
- The momentum o-f the electron is p:
p = m_e*V_e = (9.1 * 10^-31 )*(2*10^4) = 1.8222*10^-26 kgm/s
- The kinetic energy of the electron is:
K.E = p^2 / 2*m
K.E = (1.82*10^-26)^2 / 2*9.1 * 10^-31 = 1.82*10^-22 J
K.E(eV) = 1.82*10^-22 J * 6.242*10^18 = 1.14*10^-3 eV
- The De-Broglie wavelength is:
λ = h / p
λ = 6.625*10^-34 / 1.822*10^-26
λ = 3.64*10^-12 m = 0.0364 Angstroms
part b)
Find:
The de Broglie wavelength of an electron is 125 angstroms. Determine the electron energy (in eV), the momentum and the velocity.
Solution:
- The De-Broglie wavelength is:
p = h / λ
p = 6.625*10^-34 / 1.25*10^-8
p = 5.3*10^-26 kgm/s
- The momentum p is given by:
V_e = p /m_e
V_e =5.3*10^-26 /9.1 * 10^-31 = 5.82412*10^4 m/s
- - The kinetic energy of the electron is:
K.E = p^2 / 2*m
K.E = (5.3*10^-26)^2 / 2*9.1 * 10^-31 = 1.543406593*10^-21 J
K.E(eV) = 1.543406593*10^-21 J * 6.242*10^18 = 9.634*10^-3 eV