55.5k views
1 vote
Se lanza un objeto desde una plataforma.

Su altura (en metros), x segundos después del lanzamiento, está modelada por:
h(x)=-5x^2+20x+60h(x)

¿Cuántos segundos después del lanzamiento el objeto llega al suelo?

User Nathan Liu
by
4.5k points

1 Answer

7 votes

Answer:

6 seconds

Explanation:

The question in English is

An object is thrown from a platform.

Its height (in meters), x seconds after launch, is modeled by:

h(x)=-5x^2+20x+60

How many seconds after the launch does the object reach the ground?

Let

x ----> the time in seconds

h(x) ---> the height of the object

we have


h(x)=-5x^2+20x+60

we know that

When the object hit the ground the height is equal to zero

so

For h(x)=0

we have


-5x^2+20x+60=60

The formula to solve a quadratic equation of the form


ax^(2) +bx+c=0

is equal to


x=\frac{-b\pm\sqrt{b^(2)-4ac}} {2a}

in this problem we have


-5x^2+20x+60=60

so


a=-5\\b=20\\c=60

substitute in the formula


x=\frac{-20\pm\sqrt{20^(2)-4(-5)(60)}} {2(-5)}


x=\frac{-20\pm√(1,600)} {-10}


x=\frac{-20\pm40} {-10}


x=\frac{-20+40} {-10}=-2


x=\frac{-20-40} {-10}=6

The solution is x=6 sec

The he object reach the ground at x=6 seconds

User Jerry Asher
by
5.1k points