222k views
4 votes
Calculate the uncertainity in velocity of a cricket ball of mass 150 g if uncertainity in position is of the

order of 1Å.

1 Answer

6 votes

The uncertainty in velocity is
3.51 * 10^(-24) \mathrm{m} / \mathrm{s}

Step-by-step explanation:

As per Heisenberg's uncertainity principle, the position and momentum of any object cannot be measured simultaneously. So product of uncertainty in position and momentum will be equal to modified plank's constant.


\Delta x * \Delta p=(h)/(4 \pi)

Here momentum is the product of mass and velocity.

So,
\Delta x *(m * \Delta v)=(h)/(4 \pi)

Here, given mass (m) = 150 g = 0.150 kg

position delta x =
1 * 10^(10)

Planck's constant h =
6.626 * 10^(-34)
k g \cdot m^(2) / s


\Delta v=(h)/(4 \pi * \Delta x * m)=(6.626 * 10^(-34))/(4 * 3.14 * 1 * 10^(10) * 0.150)


\Delta v=(6.626 * 10^(-34+10))/(4 * 3.14 * 0.150)=(6.626 * 10^(-24))/(1.884)


\Delta v=3.51 * 10^(-24) \mathrm{m} / \mathrm{s}

So the uncertainty in velocity is
3.51 * 10^(-24) \mathrm{m} / \mathrm{s}.

User Mitchellt
by
6.1k points