Answer:
![sin(A-B)= -(33)/(65)](https://img.qammunity.org/2021/formulas/mathematics/high-school/rw12vc9zry6b0e5ll2oq16l7wvlpbl4yi1.png)
Explanation:
step 1
Find the value of sin(A)
we know that
![sin^2(A)+cos^2(A)=1](https://img.qammunity.org/2021/formulas/mathematics/middle-school/pdh9eulrtomwzw0vbxtdf0bvo7aa9lmthx.png)
we have
![cos(A)=(3)/(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/bd8qdc2hsllsipaniysjowdk7md6780f8j.png)
substitute
![sin^2(A)+((3)/(5))^2=1](https://img.qammunity.org/2021/formulas/mathematics/high-school/fgcq1stqjn3wne6ntn1biy01yj4yzamujk.png)
![sin^2(A)+(9)/(25)=1](https://img.qammunity.org/2021/formulas/mathematics/high-school/1o4x4v32tyiwhag7e21svp0hdesb2j78ph.png)
![sin^2(A)=1-(9)/(25)](https://img.qammunity.org/2021/formulas/mathematics/high-school/yy5lghin2526j01plg03h7efpmhgx3vov4.png)
![sin^2(A)=(16)/(25)](https://img.qammunity.org/2021/formulas/mathematics/high-school/glheplnur5uj0bllqjctdtw1f187e7qspm.png)
![sin(A)=\pm(4)/(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/76o8ug9oz3u7yxooug85q2x8d5b03pfg65.png)
Remember that the angle A is in Quadrant IV
so
The value of sin(A) is negative
therefore
![sin(A)=-(4)/(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/kr95fuhcpzdid4g8mtoximmwzf5n026k7b.png)
step 2
Find the value of sin(B)
we know that
![sin^2(A)+cos^2(A)=1](https://img.qammunity.org/2021/formulas/mathematics/middle-school/pdh9eulrtomwzw0vbxtdf0bvo7aa9lmthx.png)
we have
![cos(B)=(12)/(13)](https://img.qammunity.org/2021/formulas/mathematics/high-school/qy7iglwbmmo2u5gqm9q37204oeyvqye5ju.png)
substitute
![sin^2(B)+((12)/(13))^2=1](https://img.qammunity.org/2021/formulas/mathematics/high-school/vokbikyb41xqxntgjqq9zajdf38b1ac0y8.png)
![sin^2(B)+(144)/(169)=1](https://img.qammunity.org/2021/formulas/mathematics/high-school/fu22liav3ntdex8q24ky4gghgb8or4fvdh.png)
![sin^2(B)=1-(144)/(169)](https://img.qammunity.org/2021/formulas/mathematics/high-school/brz9mhtf0oi6garsex1zt547ioyv5wvtsx.png)
![sin^2(B)=(25)/(169)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ljvlhil1q5u5twkby0s3lxiakmu1tslzul.png)
![sin(B)=\pm(5)/(13)](https://img.qammunity.org/2021/formulas/mathematics/high-school/8y630i0htfe9qcotz85g2bp28a9phi9n0a.png)
Remember that the angle B is in Quadrant IV
so
The value of sin(B) is negative
therefore
![sin(B)=-(5)/(13)](https://img.qammunity.org/2021/formulas/mathematics/high-school/l7v3qfqr128iv4diphy74csdh6td01x7ho.png)
step 3
Find the value of sin(A-B)
we know that
![sin(A-B)= sinAcosB-cosAsinB](https://img.qammunity.org/2021/formulas/mathematics/high-school/58cpu0crygcret1jc3wc1a73nkd3ja60z9.png)
substitute the given values
![sin(A-B)= (-(4)/(5))((12)/(13))-((3)/(5))(-(5)/(13))](https://img.qammunity.org/2021/formulas/mathematics/high-school/rpaeebk4shtzlzeusg7k7omc60u4qid30b.png)
![sin(A-B)= (-(48)/(65))+((15)/(65))](https://img.qammunity.org/2021/formulas/mathematics/high-school/17ftai21tro1h42mj5om4438z75qiei321.png)
![sin(A-B)= -(33)/(65)](https://img.qammunity.org/2021/formulas/mathematics/high-school/rw12vc9zry6b0e5ll2oq16l7wvlpbl4yi1.png)