19.2k views
1 vote
Which is the simplified form of r Superscript negative 7 Baseline + s Superscript negative 12?

StartFraction 1 Over r Superscript 7 Baseline s Superscript 12 EndFraction
Negative r Superscript 7 Baseline minus s Superscript 12
StartFraction r Superscript 7 Over s Superscript 12 EndFraction
StartFraction 1 Over r Superscript 7 Baseline EndFraction + StartFraction 1 Over s Superscript 12 EndFraction
Mark

1 Answer

4 votes

Answer:


\frac{1}{ {r}^(7) } + \frac{1}{ {s}^(12) }

Explanation:

We want to simplify:


{r}^( - 7) + {s}^( - 12)

Let us rewrite as positive index to get:


{r}^( - 7) + {s}^( - 12) = \frac{1}{ {r}^(7) } + \frac{1}{ {s}^(12) }

We now find LCM to get:


{r}^( - 7) + {s}^( - 12) = \frac{ {r}^(7) + {s}^(12) }{ {r}^(7) {s}^(12) }

Therefore the simplified form of the given expresion is:


\frac{ {r}^(7) + {s}^(12) }{ {r}^(7) {s}^(12) }

But from the provide option, they only want us to rewrite as positive index without simplifying further

User Hector Correa
by
5.2k points