Answer:
(a) velocity, v = 8t j + k
(b) acceleration, a = 8 j
Step-by-step explanation:
The position of the particle as a function of time is given as;
r = i + 4t² j + t k --------------------(i)
(a) To get the expression of its velocity, v, find the derivative of its position with respect to time by differentiating equation (i) with respect to t as follows;
v = dr / dt = 0 + 8t j + k
v = dr / dt = 8t j + k
v = 8t j + k ----------------------(ii)
Therefore, the equation/expression for the particle's velocity (v) is
v = 8t j + k
(b) To get the expression of its acceleration, a, find the derivative of its velocity with respect to time by differentiating equation (ii) with respect to t as follows;
a = dv / dt = t j + 0
a = dv / dt = t j
a = 8 j
Therefore, the expression for the particle's acceleration, a, is a = 8 j